Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
61
всего попыток:
82
В записи пятизначных чисел N и 2N содержатся все цифры 0, 1, ... , 9. Найти минимальное такое N.
Задачу решили:
25
всего попыток:
329
Три из четырех сторон четырехугольника имеют длины 3, 4 и 5 и два угла у него прямые. Пусть S - сумма различных площадей всех возможных таких четырехугольников. Чему равна целая часть S?
Задачу решили:
34
всего попыток:
132
Найдите количество пар действительных чисел (a, b) таких, что если c является корнем уравнения x2+ax+b=0, то и c2-2 также является корнем.
Задачу решили:
47
всего попыток:
70
Пусть p и q простые числа, а r - целое, и такие, что p(p+3)+q(q+3)=r(r+3). Найдите сумму всех возможных значений p.
Задачу решили:
51
всего попыток:
81
Известно: a+b+c+d=0 Найти 1/a+1/b+1/c+1/d.
Задачу решили:
69
всего попыток:
99
Пусть a+b+c=1 и a, b, c >0. Найдите минимум a2+2b2+c2.
Задачу решили:
36
всего попыток:
179
12 различными натуральными числами заполнили таблицу 4x5. Любые два соседа (числа в клетках с общей стороной) имеют общий делитель больше 1. Если N - наибольшее число в таблице, найти наименьшее возможное значение N.
Задачу решили:
40
всего попыток:
50
Пусть действительные числа a ≥ b ≥ c > 0 и x ≥ y ≥ z > 0. Найти минимум (ax)2/((by+cz)(bz+cy)) + (by)2/((cz+ax)(cx+az)) + (cz)2/((ax+by)(ay+bx)).
Задачу решили:
51
всего попыток:
77
Известно, что уравнение x3-ax2+bx-8=0 имеет все корни действительные, a и b - положительные числа. Найдите миимально возможное значение b.
Задачу решили:
30
всего попыток:
57
14 монет пронумерованы с 1 до 14. Первому игроку известно, что монеты с номерами 1,2,...,7 настоящие, а монеты с номерами 8,9,..,14 фальшивые. Обоим игрокам известно, что фальшивые монеты легче, чем настоящие (при этом все фальшивые весят одинаково, и все настоящие весят одинаково). Второму игроку неизвестно, ни сколько монет фальшивых, ни их номера. За какое минимальное количество взвешиваний на весах без гирек первый игрок может доказать второму, что монеты 1,2,...,7 - настоящие, а 8,9,..,14 фальшивые?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|