Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
60
всего попыток:
122
Найти максимальное натуральное число n такое, что n7+1 делится на n+7.
Задачу решили:
30
всего попыток:
60
Пусть f(x)=1/(x-1)+1/(x-2)+...+1/(x-100) и x1, x2, ..., xn - нули функции в каком-то порядке. Найдите максимум выражения ([x1]-[x2]+[x3]-[x4]+...±[xn])/(n+1), где [x] - целая часть x.
Задачу решили:
104
всего попыток:
332
Найти количество квадратов, которые можно получить соединив любые 4 точки на рисунке.
Задачу решили:
53
всего попыток:
64
Пусть f(n) функция, которая возвращает ближайшее целое к n1/4.
Задачу решили:
41
всего попыток:
132
Найти наименьшее положительное натуральное число, которое не может быть выражено в виде суммы:
Задачу решили:
30
всего попыток:
57
14 монет пронумерованы с 1 до 14. Первому игроку известно, что монеты с номерами 1,2,...,7 настоящие, а монеты с номерами 8,9,..,14 фальшивые. Обоим игрокам известно, что фальшивые монеты легче, чем настоящие (при этом все фальшивые весят одинаково, и все настоящие весят одинаково). Второму игроку неизвестно, ни сколько монет фальшивых, ни их номера. За какое минимальное количество взвешиваний на весах без гирек первый игрок может доказать второму, что монеты 1,2,...,7 - настоящие, а 8,9,..,14 фальшивые?
Задачу решили:
45
всего попыток:
58
Найти количесто пар натуральных чисел таких n и m (n>=m), что nm=n+m+НОД(n,m), где НОД(n,m) - наибольший общий делитель чисел n и m.
Задачу решили:
60
всего попыток:
65
Найти сумму всех натуральных чисел n таких, что произведение его цифр равно n2-10n-22.
Задачу решили:
21
всего попыток:
32
Пусть a и b - натуральные числа, рассмотрим все 6 возможных попарных произведений чисел a, b, a+2 и b+2. Какое максимальное количество из этих произведений могут быть полными квадратами.
Задачу решили:
69
всего попыток:
82
Найти минимум функции f(x)=x3(x3+1)(x3+2)(x3+3).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|