Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
25
всего попыток:
97
Имеется 100 неотличимых по виду шаров, среди которых 51 радиоактивный. При помощи детектора радиоактивности, на который умещается не более двух шаров, и его чувствительность невысока, поэтому он срабатывает только если оба шара активны. За какое минимальное количество тестов можно гарантированно найти все радиоактивные шары?
Задачу решили:
23
всего попыток:
29
Десять мудрецов должны встать в шеренгу, при этом слева в шеренге должны стоять мудрецы в белых шляпах, а справа в черных. Всего имеется 5 белых и 5 черных шляп. Мудрецы перед испытанием могут договориться о стратегии. Затем они входят по одному в зал, при этом им одевают шляпы так, что они не знают какого они цвета. Общаться они не могут и, войдя в зал, должны сразу стать на свое место - слева или справа. Придумайте верную стратегию.
Задачу решили:
46
всего попыток:
52
Определите площадь прямоугольника с учетом известных площадей частей.
Задачу решили:
57
всего попыток:
70
Найдите величину угла x в градусах.
Задачу решили:
38
всего попыток:
61
Луч света вышел из одного угла и, отразившись 6 раз от зеркальных сторон, попал в другой угол. Определите расстояние, которое он прошел. (Ответ введите округлив с точностью до двух знаков после десятичной запятой.)
Задачу решили:
15
всего попыток:
28
Внутрь куба со стороной ребра 1 вложен другой куб так, что ровно 6 его вершин лежат на 6 разных гранях исходного куба. Определите минимально возможный размер стороны внутреннего куба.
Задачу решили:
36
всего попыток:
80
Найдите количество многочленов P(x) четвертной степени с действительными коэффициентами таких, что P(x2)=P(x)*P(-x).
Задачу решили:
41
всего попыток:
43
1+xz+yz=НОК(xz,yz), где x, y и z - натуральные числа, а НОК - наименьшее общее кратное. Найти наибольшее значение произведения xyz.
Задачу решили:
15
всего попыток:
16
Укажите необходимое и достаточное условие для целого числа N такого, что для любых многочленов с действительными коэффициентами P(x) и Q(x), для которых P(Q(x)) является многочленом степени N, существует действительное число a, при котором P(a)=Q(a).
Задачу решили:
32
всего попыток:
34
Натуральное число n не делится на 3. Пусть A(n) - это сумма делителей числа n, которые при делении на 3 дают в остатке 1, и B(n) - это сумма делителей, которые при делении на 3 дают в остатке 2. Найдите сумму всех таких n, для которых |A(n)-B(n)|2 < n.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|