Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
40
всего попыток:
44
Дан параллелограмм ABCD с углом A, равным 60?. Точка O — центр окружности, описанной около треугольника ABD. Прямая AO пересекает биссектрису внешнего угла C в точке K. Найдите отношение OK/AO.
Задачу решили:
41
всего попыток:
43
Для чисел a, b, c, d, e, f известно, что a*c*e ≠ 0 и |ax+b|+|cx+d|=|ex+f| для всех x. Найдите ad-bc.
Задачу решили:
51
всего попыток:
59
Найдите все x, при которых уравнение x2 + y2 + z2 + 2xyz = 1 (относительно z) имеет действительное решение при любом y. В ответ введите сумму модулей таких x.
Задачу решили:
35
всего попыток:
37
Выпуклый многоугольник разрезают непересекающимися диагоналями на остроугольные треугольники. Какое максимальное количество способов возможно.
Задачу решили:
39
всего попыток:
56
Найдите все такие пары (x, y) натуральных чисел, что x + y = an, x2 + y2 = am для некоторых натуральных a, n, m. В ответе укажите количество таких пар, в которых оба числа меньше 100.
Задачу решили:
41
всего попыток:
48
Найдите количество пар (a, b) натуральных чисел таких, что при любом натуральном n число an + bn является точной (n+1)-й степенью.
Задачу решили:
36
всего попыток:
53
Известно, что существует число S, такое, что если a+b+c+d=S и 1/a+1/b+1/c+1/d=S (a, b, c, d отличны от нуля и единицы), то 1/(a−1)+1/(b−1)+1/(c−1)+1/(d−1)=S. Найти S2.
Задачу решили:
83
всего попыток:
84
Из четырёх неравенств 2x > 70, x < 100, 4x > 25 и x > 5 два истинны и два ложны. Найдите значение x, если известно, что оно целое.
Задачу решили:
42
всего попыток:
54
Какое наибольшее число фишек можно поставить на клетки шахматной доски так, чтобы на любой горизонтали, вертикали и диагонали находилось четное число фишек?
Задачу решили:
40
всего попыток:
51
Найти сумму натуральных чисел на которые можно сократить дробь (3m − n)/(5n + 2m), если известно, что она сократима и что числа m и n взаимно просты.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|