Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
42
всего попыток:
54
Точечный прожектор, находящийся в вершине B равностороннего треугольника ABC, освещает угол α. Найдите сумму всех таких значений α, не превосходящих 60°, что при любом положении прожектора, когда освещенный угол целиком находится внутри угла ABC, из освещенного и двух неосвещенных отрезков стороны AC можно составить треугольник.
Задачу решили:
38
всего попыток:
41
Назовем медианой системы 2n точек плоскости прямую, проходящую ровно через две из них, по обе стороны от которой точек этой системы поровну. Какое наименьшее количество медиан может быть у системы из 2016 точек, никакие три из которых не лежат на одной прямой?
Задачу решили:
53
всего попыток:
116
Дана функция f(x) = |4 − 4|x||− 2. Сколько решений имеет уравнение f(f(x)) = x?
Задачу решили:
55
всего попыток:
57
На сторонах AB и BC равностороннего треугольника ABC взяты точки D и K, а на стороне AC — точки E и M так, что DA+AE = KC+CM = AB. Найдите угол между прямыми DM и KE (в градусах).
Задачу решили:
50
всего попыток:
80
Пусть f(x) многочлен такой, что f(f(x))-x2=xf(x). Найти f(-1000).
Задачу решили:
41
всего попыток:
45
Найти сумму всех α таких, что существует функция f: R → R, отличная от константы, такая, что f(α(x + y)) = f(x) + f(y) ?
Задачу решили:
40
всего попыток:
46
Длины сторон некоторого треугольника и диаметр вписанной в него окружности являются четырьмя натуральными числами и последовательными членами арифметической прогрессии. Максимальная длина стороны треугольника не превосходит 26. Найдите количество всех таких треугольников.
Задачу решили:
33
всего попыток:
46
Пусть f(x) = x2 + ax + bcos(x). Найдите количество целых значений параметров a, при которых уравнения f(x) = 0 и f(f(x)) = 0 имеют совпадающие непустые множества действительных корней.
Задачу решили:
61
всего попыток:
87
Отец с двумя сыновьями отправились навестить бабушку, которая живет в 33 км от города. У отца есть мотороллер, скорость которого 25 км/ч, а с пассажиром — 20 км/ч (двух пассажиров на мотороллере перевозить нельзя). Каждый из братьев идет по дороге со скоростью 5 км/ч. За какое минимальное количество минут все трое доберутся до бабушки?
Задачу решили:
35
всего попыток:
43
На сторонах BC, CA, AB треугольника ABC выбраны соответственно точки A1, B1, C1 так, что медианы A1A2, B1B2, C1C2 треугольника A1B1C1 соответственно параллельны прямым AB, BC, CA. Найти отношение длин |A1B|/|CA1|.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|