img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 29
всего попыток: 31
Задача опубликована: 10.07.23 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Точка P‍ удалена на расстояние, равное 7, от центра окружности, радиус которой равен 11. Через точку P‍ проведена хорда, равная 18. Найдите длину наибольшего из отрезков, на которые делится хорда точкой P.

Задачу решили: 32
всего попыток: 34
Задача опубликована: 19.07.23 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: vochfid

В большей из двух концентрических окружностей проведена хорда, равная 32 и касающаяся меньшей окружности. Найдите радиус внутренней окружности, если ширина образовавшегося кольца равна 8.

Задачу решили: 30
всего попыток: 36
Задача опубликована: 24.07.23 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: AnnaAndreeva (Анна Андреева)

Около четырёхугольника ABCD‍ можно описать окружность. Кроме того, |AB| = 3,‍ |BC| = 4,‍ |CD| = 5‍ и |AD| = 2.‍ Найдите |AC|2.

Задачу решили: 29
всего попыток: 34
Задача опубликована: 02.08.23 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

Радиусы двух концентрических окружностей относятся как 1:2. Хорда большей окружности делится меньшей окружностью на три равные части. Найдите квадрат отношения этой хорды к диаметру большей окружности.

Задачу решили: 24
всего попыток: 25
Задача опубликована: 27.10.23 08:00
Прислал: admin img
Источник: Польская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Определить сумму всех натуральных чисел x, для которых число 1 + x + x2 + x3 + x4 + x5 + x6 + x7 является степенью простого числа.

Задачу решили: 10
всего попыток: 11
Задача опубликована: 30.10.23 08:00
Прислал: admin img
Источник: Польская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Дан треугольник ABC. Точка J - это центр окружности, которая касается стороны BC и продолжений сторон AB и AC. Точки P, B, C, Q лежат в этой последовательности на одной прямой, причём |PB| = |AB| и |QC| = |AC|. Найти сумму углов BAC и QJP в градусах.

Задачу решили: 11
всего попыток: 12
Задача опубликована: 08.11.23 08:00
Прислал: admin img
Источник: Польская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: MikeNik (Mikhail Nikitkov)

Действительные отличные от нуля числа x, y таковы, что
x * (4x - 2y)/(4x + 2y) = y * (4y - 2x)/(4y + 2x). Найти |x|/|y|.

Задачу решили: 22
всего попыток: 23
Задача опубликована: 29.11.23 08:00
Прислал: admin img
Источник: Турнир имени А.П.Савина, 2021
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: old

Для какого наибольшего натурального числа N в десятичной записи каждого из чисел N, 2N, 3N, …, N² последняя цифра не равна предпоследней?

Задачу решили: 23
всего попыток: 23
Задача опубликована: 04.12.23 08:00
Прислал: admin img
Источник: Турнир им. А.П.Савина, 2021
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Фальшивомонетчик напечатал купюры достоинством 43, 57 и 70 рублей, поровну каждого вида. Когда он потратил менее пяти купюр, у него осталось всего 20172 рубля. Сколько он потратил денег?

Задачу решили: 25
всего попыток: 26
Задача опубликована: 14.02.24 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Девять действительных a1, a2 ..., a9 образуют арифметическую прогрессию. Известно, что a9 в 3 раза больше среднего арифметического этих девяти чисел. Найдите a1, если известно, что a4 = 6.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.