img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 43
всего попыток: 55
Задача опубликована: 07.10.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: snape

Пусть многочлен P(x)=x3+x2+c, c - действительное число. Пусть I - конечный интервал такой, что P(x) имеет более, чем один действительный корень для всех c принадлежащих I. Найдите длину этого интервала.

Задачу решили: 45
всего попыток: 82
Задача опубликована: 09.10.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Найдите сумму всех целых значений x и y, удовлетворяющих уравнению x3+(x+1)3+...+(x+7)3=y3

Задачу решили: 46
всего попыток: 59
Задача опубликована: 16.10.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: snape

Пусть a, b, c и d - действительные числа и a^2+b^2+c^2+1=d + \sqrt{(a+b+c-d)}. Найти d.

Задачу решили: 37
всего попыток: 71
Задача опубликована: 21.10.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

В треугольнике ABC биссектрисы углов B и C пересекают стороны AC и AB  соответственно в точках D и E. Разность углов <ADE - <AED равна 60 градусов. Найти угол ACB в градусах.

Задачу решили: 53
всего попыток: 56
Задача опубликована: 26.10.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: MMM (MMM MMM)

Пусть a, b, c, d > 0 и c2+d2=(a2+b2)3, найти минимум значения a3/c+b3/d.

Задачу решили: 37
всего попыток: 58
Задача опубликована: 28.10.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Пусть P(x)=x2016±x2015±...±x±1 многочлен с коэффициентами ±1. Известно, что у него нет действительных корней. Какое максимальное количество коэффициентов -1 у него может быть?

Задачу решили: 103
всего попыток: 121
Задача опубликована: 30.10.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

На рисунке указаны проценты площадей непересекающихся областей квадратов. Чему равно соотношение сторон квадратов (меньшей к большей)?

Синяя площадь

Задачу решили: 43
всего попыток: 81
Задача опубликована: 06.11.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В треугольнике ABC размещен квадрат DEFG так, что вершины D и E являются серединами сторон AB и BC, а точки F и G находятся на стороне AC. Найдите максимально возможный острый угол между прямыми BF и CD (в градусах).

Задачу решили: 29
всего попыток: 44
Задача опубликована: 11.11.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Найти сумму всех таких целых чисел b, что уравнение [x2]-2012x+b=0 имеет нечетное число корней, [x] - целая часть числа x.

Задачу решили: 41
всего попыток: 68
Задача опубликована: 13.11.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Найти количество целых неотрицательных решений уравнения [x/n]=[x/(n+1)], n - натуральное, [x] - целая часть x. В ответе укажите количество решений для n = 1000.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.