img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 33
всего попыток: 52
Задача опубликована: 22.07.19 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: anrzej

На плоскости расположен равносторонний треугольник с длиной стороны x и точка. От точки до вершин треугольника расстояния 3, 5 и 7. Найдите все возможные треугольники и соответствующие им длины стороны x. В ответ введите сумму квадратов полученных значений различных x.

Задачу решили: 23
всего попыток: 48
Задача опубликована: 17.01.20 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Внутри квадрата расположены N точек так, что никакие три из N+4 точек (N поставленных и 4 вершины квадрата) не лежат на одной прямой. Некоторые из этих N+4 точек соединены отрезками так, что все отрезки не пересекаются (но могут иметь общие концы). Какое минимальное число точек необходимо поставить,чтобы оказалось не менее 2020 отрезков (не считая сторон квадрата)?

Задачу решили: 35
всего попыток: 73
Задача опубликована: 08.06.20 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: vochfid

Полукруг разбит линиями на три части одинаковой площади.

Три части полукруга

Найдите угол α в градусах. Ответ округлите до ближайшего целого.

Задачу решили: 22
всего попыток: 81
Задача опубликована: 03.07.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: kondor1969 (Руслан Бакиров)

Пять точек на плоскости расположены так, что среди всех прямых соединяющих любые две из них нет параллельных, совпадающих и перпендикулярных друг другу. Через каждую из исходный точек проводятся перпендикуляры ко всем прямым, соединяющим каждые две из остальных четырех точек. Какое максимальное количество точек пересечения этих перпендикуляров между собой окажется, не считая исходных пять точек.

Задачу решили: 30
всего попыток: 34
Задача опубликована: 12.03.21 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На стороне AC треугольника ABC выбрана точка D так, что |AB|=|BD|+|CD|. угол CDB равен 100°, угол DCB равен 65°. Найти угол BAC в градусах.

Задачу решили: 28
всего попыток: 87
Задача опубликована: 17.03.21 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Точка D находится внутри треугольника ABC на биссектрисе угла BAC и такова, что угол ADB равен 150°, а угол DCB - 30°. Найдите разность углов CBD и ACD в градусах.

Задачу решили: 38
всего попыток: 53
Задача опубликована: 29.09.21 08:00
Прислал: admin img
Источник: https://archimedes-lab.org/
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

3 фонарика

Найти угол α в градусах.

Задачу решили: 39
всего попыток: 43
Задача опубликована: 12.01.22 08:00
Прислал: admin img
Источник: Задачи и головоломки на FB
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Дан эллипс с полуосями 5 и 12. Найти расстояние от центра эллипса до центра окружности, касающейся (внешним образом) эллипса и двух его параллельных касательных.

Эллипс и окружность

Задачу решили: 19
всего попыток: 37
Задача опубликована: 11.04.22 08:00
Прислал: admin img
Источник: Задачи и головоломки на FB
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

У Кости есть игрушечная железная дорога в виде кольца, состоящая из n=13 равных дуг.

Железная дорога

Костя решил докупить ещё несколько таких же дуг, чтобы удлинить путь (при этом он уже не будет круговым, но должен остаться замкнутым и без самопересечений). Какое минимальное количество дуг ему хватит, чтобы осуществить задуманное?

Задачу решили: 25
всего попыток: 61
Задача опубликована: 13.01.23 08:00
Прислал: admin img
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

2 воздушных змея

Как показано на рисунке △ABC разделяется на 3 части линиями DE и FG. DE || BC. FG делит трапецию BDEC на два "воздушных змея" BFGC и FDEG, все длины сторон в которых являются целыми числами. |GF| = |GC| = |GE| = 17, а |BD| = 35. Найти площадь синего треугольника △ADE.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.