Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
37
всего попыток:
65
Найти количество разных от 1 до 1000 значений действительной функции f(x)=[2x]+[4x]+[6x]+[8x], где [x] - целая часть числа x.
Задачу решили:
48
всего попыток:
61
Найти решение уравнения x[x[x[x]]]=2001, где [x] - целая часть числа x.
Задачу решили:
44
всего попыток:
68
Пусть m и n - натуральные числа такие, что 7m-3n делит m4+n2. Найдите m+n.
Задачу решили:
40
всего попыток:
42
В треугольнике ABC |AB|=|AC|, точки D и E выбраны на сторонах AB и AC соответственно так, что |AD|=|DB|, |AE|=|EC|. Точка F расположена на прямой DE так, что треугольники ABC и BFA конгруэнтны. Найдите (|AB|/|BC|)2.
Задачу решили:
54
всего попыток:
63
Действительные числа x и y таковы, что x4y5+y4x5=810 и x3y6+y3x6=945. Найдите 2x3+x3y3+2y3.
Задачу решили:
65
всего попыток:
108
Найти сумму всех целых решений уравнения (x2-3x+1)x+1=1.
Задачу решили:
52
всего попыток:
89
Известно, что . Найти .
Задачу решили:
43
всего попыток:
55
Пусть многочлен P(x)=x3+x2+c, c - действительное число. Пусть I - конечный интервал такой, что P(x) имеет более, чем один действительный корень для всех c принадлежащих I. Найдите длину этого интервала.
Задачу решили:
45
всего попыток:
82
Найдите сумму всех целых значений x и y, удовлетворяющих уравнению x3+(x+1)3+...+(x+7)3=y3.
Задачу решили:
46
всего попыток:
59
Пусть a, b, c и d - действительные числа и . Найти d.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|