Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
95
всего попыток:
143
Два парома отправляются одновременно с разных берегов реки и встречаются в 140 метрах от берега, достигают противоположных берегов и сразу отправляются обратно. Второй раз они встречаются в 80 метрах от противоположного берега. Определите ширину реки.
Задачу решили:
76
всего попыток:
92
На окружности с центром в точке O и радиусом 1 отмечены точки A и B. Хорда AB является диаметром второй окружности, при этом на этой окружности имеется точка C такая, что расстояние OC является максимальным. Найдите квадрат длины хорды AB.
Задачу решили:
141
всего попыток:
206
Сколько всего страниц в книге, если для их нумерации потребовались 2382 цифры?
Задачу решили:
135
всего попыток:
216
Произведение 1000 натуральных чисел равно 1000. Чему равна минимально возможная их сумма.
Задачу решили:
126
всего попыток:
202
Сколько всего страниц в книге, если сумма всех цифр номеров страниц равна 2395?
Задачу решили:
46
всего попыток:
85
В треугольнике угол ABC прямой. Точка P на стороне AC выбрана так, что |AP|/|PC|=3/2, а точка Q такая, что |AQ|/|QB|=3, а угол AQP=2*PQC. Чему равен угол PQC в градусах?
Задачу решили:
42
всего попыток:
152
Найдите все треугольники, длины сторон которых целые числа и площади и периметры у каждого равны между собой (как числа). У каждого такого треугольника выберите самую длинную сторону и сложите все эти длины. Какое число у вас получилось?
Задачу решили:
46
всего попыток:
84
Известно, что a15+a25 +...an5= 2004, ai - целые числа. Найдите минимальное положительное значение a1+a2 +...an?
Задачу решили:
45
всего попыток:
94
В прямоугольном треугольники периметр (P) и площадь (S) - целые числа и (P+4)=(S-1)(P-4). Найдите сумму всех возможных переиметров таких треугольников?
Задачу решили:
83
всего попыток:
121
Вычислить сумму a2015 + 1/a2015, если a2– a + 1 = 0.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|