img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 29
всего попыток: 34
Задача опубликована: 26.07.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В трапеции с целочисленными основаниями в соотношении 1:5 проведен отрезок, параллельный основаниям через точку пересечения диагоналей. Найти наименьшее целочисленное значение длины этого отрезка.

Задачу решили: 22
всего попыток: 65
Задача опубликована: 13.08.21 08:00
Прислал: solomon img
Источник: Корейская олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

На стороне ВС треугольника АВС с целочисленными углами в градусах отмечена точка D, CD=AB, угол BAD=30°. Найти наибольший угол ВАС в градусах.

Задачу решили: 37
всего попыток: 44
Задача опубликована: 23.08.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В треугольнике АВС угол В=45°. На стороне ВС точка D делит её в отношении ВD:СD=1:2, угол ВАD=15°. Найти угол С в градусах.

Задачу решили: 28
всего попыток: 38
Задача опубликована: 30.08.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: bbny

Гипотенуза прямоугольного треугольника, его площадь и острые углы в градусах имеют целочисленные значения. Найти наибольшую площадь, равную значению гипотенузы.

Задачу решили: 28
всего попыток: 49
Задача опубликована: 10.09.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

В правильном треугольнике расположена точка,отстоящая от вершин треугольника на расстоянии 3,4,5. Найдите площадь треугольника. Ответ укажите с точностью до одного знака после запятой.

Задачу решили: 18
всего попыток: 23
Задача опубликована: 15.09.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

В треугольнике АВС со сторонами |ВС|=12, |АС|=85 точка P является точкой пересечения высоты AD и срединного перпендикуляра к стороне АВ. На отрезке ВP взята точка Q так,что AQBC- вогнутый четырехугольник с размерами сторон |BQ|=5, |AQ|=84. Найти площадь треугольника АВС.

Задачу решили: 27
всего попыток: 35
Задача опубликована: 17.09.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Четырехугольник ABCD с внутренними углами А=150°, В=60°, С=60° отрезком СР (точка Р расположена на стороне АВ) разделен на две равновеликие части. Найти отношение |АР|:|ВР|, если |АВ|:|CD|=2:3.

Задачу решили: 31
всего попыток: 39
Задача опубликована: 08.10.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Вокруг равностороннего треугольника ABC описана окружность радиуса R, на которой выбрана точка K, лежащая на луче выходящем из угла A. Угол BAK равен 15 градусов. Найдите (|KA|4+|KB|4+|KC|4)/R4.

Задачу решили: 25
всего попыток: 28
Задача опубликована: 15.10.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Отношение стороны ромба ABCD к расстоянию между центрами окружностей, описанных около треугольников ABC и BCD, равно 3:4. Найти отношение радиусов (меньшего к большему) этих окружностей.

Задачу решили: 28
всего попыток: 30
Задача опубликована: 22.10.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: putout (Дмитрий Лебедев)

В квадрате ABCD проведена дуга окружности с радиусом, равным стороне квадрата с центром в вершине А. В круговом секторе ABD вписана окружность, к которой проведена касательная из вершины С. Найти наименьший угол в градусах между касательной и стороной квадрата.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.