Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
119
всего попыток:
184
Даны две концентрические окружности. Хорда большей из них является касательной к меньшей окружности и имеет длину 100. Чему равна площадь кольца между двумя окружностями. Ответ округлите до ближайшего целого.
Задачу решили:
91
всего попыток:
109
Дан треугольник АВС, у которого сторона |BC|=3. На стороне BC отложена точка D, так, что |BD|=2. Чему равно значение |AB|2+2 |AC|2-3 |AD|2?
Задачу решили:
47
всего попыток:
94
Каждый Флибс является Флобсом. Половина всех Флобсов являются Флибсами, и половина всех Флубсов является Флобсами. Найдено 30 Флубсов и 20 Флибсов, среди которых ни один Флубс не является Флибсом. Как много среди найденных Флобсов не являются ни Флибсами, ни Флубсами?
Задачу решили:
74
всего попыток:
166
Четыре окружности, имеющие одинаковый диаметр, размещены внутри треугольника, площадь которого 1. Найдите диаметр окружностей d. Ответ приведите в виде целого числа [1000*d].
Задачу решили:
35
всего попыток:
73
Три вершины треугольника с длинами сторон a,b,c имеют целочисленные координаты и лежат на окружности радиуса R=20. Найдите минимальное возможное значение произведения a•b•c.
Задачу решили:
25
всего попыток:
56
Выпуклый семиугольный торт разрезали всевозможными прямыми соединяющими его вершины. Какое минимальное количество кусков могло получиться?
Задачу решили:
43
всего попыток:
52
Одна из вершин треугольника имеет координаты (7, 1), другая вершина лежит на оси X, третья – на линии графика функции y=x. Определите минимально возможное значение периметра этого треугольника.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|