img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Джангар" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 6
всего попыток: 9
Задача опубликована: 04.12.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В параллелограмме АВCD на стороне ВС отмечена точка К так, что АК является биссектрисой угла А, отрезок KD является биссектрисой угла АКС.

Параллелограмм и две биссектрисы - 3

Длина отрезка КС равна целому числу, отношение длины отрезка ВК к длине отрезка КС равно целому числу. Найдите миллиардную (по возрастанию) целочисленную площадь параллелограмма.

Задачу решили: 10
всего попыток: 18
Задача опубликована: 17.02.25 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2717
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Рассмотрим выпуклые многоугольники, вершины которых имеют целые координаты, а стороны наклонены к оси X под углами, кратными 45-и градусам.

Обозначим f(n) – количество таких различных (попарно не конгруэнтных) многоугольников, площадь которых равна n.

Найдите произведение f(1) × f(2) × f(3) × f(4) × f(5).

Задачу решили: 10
всего попыток: 12
Задача опубликована: 30.06.25 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish

Неперпендикулярные прямые u и v пересекаются в точке M0. Отличная от неё точка M1 находится на прямой u.

Рассмотрим последовательность отрезков одинаковой длины M0M1, M1M2, M2M3, M3M4, ... и т.д., где местоположения точек M2, M3, M4, и т.д. определим на прямых v и u поочерёдно следующим образом.

• Из нечётной точкм M2k-1 на прямой u опустим перпендикуляр M2k-1P2k-1 на прямую v. Определим точку M2k на прямой v таким образом, что точка P2k-1 будет серединой отрезка M2k-2M2k.

• Из чётной точкм M2k на прямой v опустим перпендикуляр M2kP2k на прямую u. Определим точку M2k+1 на прямой u таким образом, что точка P2k будет серединой отрезка M2k-1M2k+1.

Зигзаг

Пусть острый угол между прямыми u и v равен α. Определим функцию f(α) как наименьшее натуральное число n, такое, что точка Mn совпадёт с точкой M0. Если такое число не существует, определим f(α)=-1.

Найдите f(32°)+f(33°).

Замечание. Местоположения некоторых точек могут совпадать.

Задачу решили: 19
всего попыток: 34
Задача опубликована: 15.08.25 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2646
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Дана квадратная решётка n×n точек. Расстояния между соседними точками равны 1.

Найдите площадь объединения n×n кругов радиуса 1 с центрами в точках решётки, если n=7.

Круги на квадратной решётке

Результат умножьте на 1000 и введите целую часть произведения.

+ 2
+ЗАДАЧА 2858. 3, 4, 5 (Виктор Баккал)
  
Задачу решили: 11
всего попыток: 16
Задача опубликована: 01.09.25 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Lec

Докажите, что треугольник со сторонами 3, 4, 5 – прямоугольный. Нельзя использовать тригонометрию, теорему Пифагора, обратную теорему Пифагора и формулу Герона.

Задачу решили: 9
всего попыток: 15
Задача опубликована: 03.10.25 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2863
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MikeNik (Mikhail Nikitkov)

Дан треугольник со сторонами 100, 70, 85. Кривая L это геометрическое место точек, из которых этот треугольник виден под углом π/6. На рисунке изображены зелёным цветом два её фрагмента.

Длина дуги - 2

Вычислите длину кривой L и введите в ответе её целую часть.

Задачу решили: 1
всего попыток: 2
Задача опубликована: 15.10.25 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2863
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

1. В окружность с радиусом R=9000/π вписан треугогльник ABC с углами A=10°, B=20°, C=150°.

Кривая L является геометрическим местом точек, из которых треугольник ABC виден под углом 30°. Найдите целую часть её длины.

2. В другую окружность с таким же радиусом R=9000/π вписан треугогльник DEF с углами D=10°, E=50°, F=120°.

Кривая M является геометрическим местом точек, из которых треугольник DEF виден под углом 30°. Найдите целую часть её длины.

Ведите в ответе сумму двух найденных чисел.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.