Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
33
всего попыток:
52
Найдите количество взаимно-однозначных отображений, для которых выполняется ровно одно из условий .
Задачу решили:
73
всего попыток:
100
В треугольнике ABC провели биссектрису СD. Прямая, параллельная CD и проходящая и через точку B, пересекает продолжение AC в точке E. Известно, что |AD| = 4, |BD| = 6, |BE| = 15. Найдите |BC|2.
Задачу решили:
50
всего попыток:
85
Среди 10-элементных подмножеств множества A ={1, 2, ..., 30} найдите количество тех, в которых разность любых двух элементов не меньше 3.
Задачу решили:
30
всего попыток:
44
В остроугольном треугольнике ABC высоты BD и CE пересекаются в точке H, точка M --- середина AH. Через точки A и H провели окружность, центр O которой лежит вне треугольника ABC. Окружность пересекается с прямой AC$ в точке P. Известно, что углы MED и APO равны, |AB| = 200, |AD| = 40, |AP| = 96√6. Найдите длину отрезка OP.
Задачу решили:
42
всего попыток:
74
Из букв A, B, C, D составляют слова длины 8, так чтобы к каждой букве А справа примыкала буква B, а к каждой букве B слева примыкала буква A, например DABABDAB и DDCCDCCD. Cколько различных слов можно составить?
Задачу решили:
36
всего попыток:
112
Из 20 сидящих за круглым столом людей выбирают 8. Найдите количество способов сделать это так, чтобы никакие двое выбранных не сидели рядом.
Задачу решили:
24
всего попыток:
61
Внутри выпуклого 5-угольника A1A2A3A4A5 расположена точка O, причем равны следующие углы:
Задачу решили:
32
всего попыток:
152
Найдите количество всевозможных пар подмножеств множества A = {1,2, ..., 6}, для которых выполняется следующее условие: объединение этой пары дает множество A, а пересечение содержит не менее двух элементов. Подмножества в паре различны, порядок не учитывается.
Задачу решили:
31
всего попыток:
64
В треугольнике ABC известны длины всех его сторон: |AB| = 21, |BC| = 42, |CA| = 35. Из точек B и C опущены высоты BD и CE, F точка пересечения прямых BD и CE. Прямая, проходящая через центр вписанной окружности треугольника ABC и перпендикулярная BC, пересекает биссектрису угла BFC в точке G. Из G на BF опущена высота GH. Найдите |FH|2.
Задачу решили:
34
всего попыток:
62
Сколькими способами можно провести в выпуклом 7-угольнике A1A2...A7 четыре непересекающихся диагонали так, чтобы 7-угольник разбивался ими на 5 треугольников, каждый из которых имеет с 7-угольником хотя бы одну общую сторону?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|