Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
41
всего попыток:
64
Отличное от нуля число назовём оригинальным, если оно равно целой части произведения двухсот и арксинуса разности двух его некоторых цифр. Чему равна сумма всех оригинальных чисел?
Задачу решили:
27
всего попыток:
79
На какое наименьшее число частей можно разрезать поверхность правильного тетраэдра так, чтобы оклеить куб без пробелов и наложений?
Задачу решили:
25
всего попыток:
49
Площади квадратов BKLM и ABCD соответственно равны 2 и 25. Угол CBK тупой. Точки A, D, L, M лежат на окружности, точка B общая. Найдите тангенс угла ABK.
Задачу решили:
34
всего попыток:
50
Внутри окружности расположены 2 квадрата площадью 8 и 3. Точки Т, М, Д, Е лежат на окружности, точка А – общая у квадратов (см. рисунок). Чему равен минимальный целочисленный радиус круга, в который можно поместить этот рисунок?
Задачу решили:
5
всего попыток:
23
Поверхность правильного октаэдра разрезать на как можно меньшее количество равных частей и ими оклеить без просветов и наложений простую (тригональную) бипирамиду. Чему равно количество частей? Простая (тригональная) бипирамида - это многогранник, состоящий из двух равных правильных тетраэдров, имеющих общую грань.
Задачу решили:
4
всего попыток:
5
Разрежьте поверхность правильного октаэдра на две части с соотношением площадей 7:1 так, чтобы ими можно было оклеить без просветов и наложений простую (тригональную) бипирамиду. Простая (тригональная) бипирамида - это многогранник, состоящий из двух равных правильных тетраэдров, имеющих общую грань.
Задачу решили:
31
всего попыток:
37
В равнобедренном треугольнике ABC с основанием |AC|=2, высотой |BD|=2+√3 вписаны квадраты KLMN и DPRQ. Найти отношение площадей квадратов KL MN и DPRQ.
Задачу решили:
11
всего попыток:
21
Боковое ребро правильной шестиугольной призмы проходит через вершину правильного октаэдра, а противоположное ему ребро призмы совпадает с отрезком, соединяющим центры противоположных граней октаэдра. Найти отношение объёмов общей части тел и октаэдра.
Задачу решили:
25
всего попыток:
48
Администратор сайта проводит конкурс на лучшую авторскую задачу. Условия таковы: участники анонимно предлагают одну свою задачу. После публикации задач все участники дают оценку каждой задаче, кроме своей. В конкурсе приняли участие 6 человек. Каждый участник за лучшую (по его мнению) задачу давал 5 баллов, за следующую 4 балла, и т.д., за пятую - 1 балл. По каждой задаче баллы суммировались - это рейтинг задачи. Оказалось, что все рейтинги различны. А) Могли ли все рейтинги быть простыми числами? Б) Могла ли сумма четырёх наибольших рейтингов быть в три раза больше суммы остальных рейтингов? В) Какова минимальная сумма третьего и четвёртого по величине рейтингов? В качестве ответа на вопросы А), Б) вводите 1, если «Да» и 0, если «Нет»; на вопрос В) вводите сумму рейтингов. Например, ответ 1029 означает: А) «Да», Б) «Нет», В) 29.
Задачу решили:
11
всего попыток:
16
Отрезки, соединяющие центры оснований правильной шестиугольной призмы и центры противоположных граней правильного октаэдра, совпадают. Боковое ребро призмы пересекает ребро октаэдра в его середине. Найти наибольшее отношение объёма общей части тел к объёму октаэдра.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|