img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 22
всего попыток: 37
Задача опубликована: 15.12.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Найдите наименьший периметр прямоугольного треугольника, все стороны которого – рациональные числа, а площадь равна 5.

Задачу решили: 21
всего попыток: 24
Задача опубликована: 29.01.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Lec

В трапеции угол между диагоналями равен 30°, и они делят острые углы трапеции пополам. Найдите площадь трапеции, если большее основание трапеции равно 8.

Задачу решили: 23
всего попыток: 29
Задача опубликована: 05.02.24 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

В области, ограниченной параболой y = 8 − x2 и осью Ox, находится 25 целочисленных точек (см. рис.).

Парабола и целочисленные точки

При каком натуральном значении k количество точек с целочисленными координатами, находящимся внутри области, ограниченной параболой y = k − x2 и осью Ox равно 2024.

Задачу решили: 14
всего попыток: 17
Задача опубликована: 22.03.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

На рисунке изображена красная «змейка», представляющая собой бесконечную ломаную, соседние звенья которой перпендикулярны, длины её звеньев – натуральные числа 1, 2, 3, …

Ломаная в параболе

Докажите, что все вершины ломаной лежат на параболе. Ломаная делит внутреннюю область параболы на криволинейные треугольники, площади которых соответственно равны S1, S2, S3, …

Найдите площадь S100 сотого криволинейного треугольника и укажите ее в ответе.

Задачу решили: 18
всего попыток: 20
Задача опубликована: 29.03.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg

Учительница написала на доске трехзначное число АНА, и каждому ученику раздала по карточке, с двумя разными цифрами n и m, все четыре натуральных числа A, H, m и n - различны. Девочек она попросила найти значения выражения An + Hm + An, а мальчиков попросила найти значение выражения Am + Hn + Am. Выполнив задание, ученики удивились, потому что и у девочек, и у мальчиков получилось одно и тоже число. Какое наибольшее число АНА учительница могла написать на доске? 

Светлая память Анне Николаевне Андреевой, учителю математики  и нашей коллеге на Диофанте.ру с ником xyz, позже AnnaAndreeva.

Задачу решили: 20
всего попыток: 25
Задача опубликована: 06.05.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Натуральный ряд «удвоили», то есть каждое число записали дважды. Затем полученный ряд разбили на множества: M1, M2, M3, …, так, что множество Mn содержит n чисел. Ниже вертикальными черточками показано разбиение начала «удвоенного» натурального ряда на множества: 1,|1, 2,|2, 3, 3,|4, 4, 5, 5,|6, 6, 7, 7, 8,|8, 9, 9, 10, 10, 11,|11, 12, 12, 13, 13, Найдите сумму чисел в множестве M2024, укажите ее в ответе.

+ 2
  
Задачу решили: 12
всего попыток: 17
Задача опубликована: 10.06.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: user033 (Олег Сopoкин)

На шестиугольной сетке ячейки закрашены следующим: красится одна ячейка и все, расположенные вдоль трех прямых, проходящих через центр начальной ячейки и образующих между собой шесть «углов» величиной 60°. В каждом из этих «углов» красятся ячейки, образующие новые «углы» величиной 60° так, что между ними образуются «углы» из незакрашенных ячеек, и так далее до бесконечности.

Снежинки

Закрашенные ячейки в «правильных шестиугольниках» с центром в начальной образуют «снежинки». Число ячеек в этих «снежинках» задают последовательность  1, 7, 13, 19, 31, 49, 67, … Найдите номер «снежинки», которая содержит 15151 ячейку.

Задачу решили: 11
всего попыток: 35
Задача опубликована: 19.06.24 08:00
Прислал: avilow img
Источник: По мотивам задачи 2664
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

Имеются двусторонняя линейка и окружность, радиус которой больше ширины линейки. За одну операцию можно либо провести прямую, либо две параллельные прямые, используя обе стороны линейки. За какое минимальное количество операций можно найти центр окружности?

Задачу решили: 9
всего попыток: 13
Задача опубликована: 29.07.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

В бумажном квадрате 7х7 на рисунке вырезан меньший квадрат так, что его вершины находятся в узлах решетки.

Дырявый квадрат

Разрежьте эту фигуру на несколько частей и переложите их так, чтобы получился квадрат 7х7 с квадратной дырой в центре, причем стороны квадратной дыры были параллельны сторонам исходного квадрата. Разрезы можно делать любой формы. В ответе укажите наименьшее число частей разрезания.

Задачу решили: 22
всего попыток: 29
Задача опубликована: 12.08.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: solomon

Вершины четырехугольника ABCD лежат на параболе y = x2, диагонали AC и BD перпендикулярны. Известны абсциссы трех его вершин: xA = 23, xB = –24, xC = – 25.

Парабола и четырехугольник

Найдите абсциссу вершины D этого четырехугольника.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.