img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 33
всего попыток: 40
Задача опубликована: 30.12.22 00:08
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Vkorsukov

Ёлочка украшена четырьмя горизонтальными гирляндами и пятью гирляндами, спускающимися с вершины вниз. Во всех гирляндах по пять шариков.

Ёлочка и гирлянды

Впишите в шарики все целые числа от 1 до 21 (в каждый шарик по одному числу) так, чтобы сумма пяти чисел в каждой из девяти гирлянд была одной и той же. В ответе укажите сумму чисел в одной из гирлянд.

Задачу решили: 34
всего попыток: 41
Задача опубликована: 31.12.22 00:08
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Sam777e

Ёлочка украшена тремя горизонтальными гирляндами и четырьмя гирляндами, спускающимися с вершины вниз.

Ёлочка и гирлянды (новогодняя)

Во всех гирляндах по четыре шарика. Впишите в шарики все целые числа от 1 до 13 (в каждый шарик по одному числу) так, чтобы сумма четырёх чисел в каждой из семи гирлянд была одной и той же. В ответе укажите сумму чисел в одной из гирлянд.

Задачу решили: 19
всего попыток: 25
Задача опубликована: 03.02.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Рассмотрим бесконечную клетчатую плоскость, в каждую клетку которой вписано число натурального ряда, – по порядку, начиная с 1, следуя по спирали (см. рис.). Спираль для определенности будем считать закручивающейся по часовой стрелке.

Круги на спирали

Введем прямоугольную систему координат с началом в центре клетки с числом 1 и осями, параллельными сторонам клеток. Нарисуем в ней четыре параболы y=x3, y=–x3, x=y3 и x=–y3. Рассмотрим на параболах точки с целыми координатами. Каждая такая точка определяет клетку плоскости, а значит, и написанное в ней число. Например, точке параболы (0; 0) соответствует число 1, точке (1; 1) — число 9, а точке (2; 8) — число 283. Все такие числа выделены зеленым цветом. Сгруппируем выделенные числа так, чтобы все они (кроме центральной единицы) лежали на концентрических окружностях. На рисунке приведены первые две окружности.  Найдите среднее арифметическое чисел, расположенных на 10-ой окружности и укажите его в ответе.

Задачу решили: 12
всего попыток: 16
Задача опубликована: 24.02.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Гипотрохоида — плоская кривая, образуемая фиксированной точкой, находящейся на фиксированной радиальной прямой окружности, катящейся по внутренней стороне неподвижной окружности. Гипотрохоида задается тремя параметрами: R — радиус неподвижной окружности, r — радиус вращающейся окружности, d — расстояние от фиксированной точки до центра вращающейся окружности. На рисунке приведена гипотрохоида с параметрами R=11, r=7, d=11, которая делит плоскость на 35 частей.

Деление плоскости на части

На сколько частей разделит плоскость гипотрохоида с параметрами R = p101, r = p100, d = p101, где p100 и p101 — простые числа с номерами 100 и 101?

Задачу решили: 19
всего попыток: 39
Задача опубликована: 19.04.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: vochfid

Сколько действительных корней имеет уравнение 100 cos=√x?

Задачу решили: 26
всего попыток: 31
Задача опубликована: 09.06.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Натуральное число назовем представимым, если его можно представить в виде такой суммы a+b+ab, где a и b натуральные числа. Например, число 101 представимое, потому что 101 = 5 + 16 + 5 · 16. Сколько представимых чисел среди трехзначных?

Задачу решили: 24
всего попыток: 31
Задача опубликована: 17.07.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В таблице умножения от 1х1 до 7х7 выделен центральный ступенчатый квадрат максимального размера так, как показано на рисунке.

Ступенчатый квадрат таблицы Пифагора

Сколькими нулями оканчивается произведение чисел во всех клетках такого же ступенчатого квадрата для таблицы умножения от 1х1 до 25х25?

Задачу решили: 24
всего попыток: 29
Задача опубликована: 11.08.23 08:00
Прислал: avilow img
Источник: Конференция компании «КРИПТОНИТ»
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

Запись натурального числа начинается с цифры «3». Если эту цифру перенести в конец записи, то число уменьшится втрое. Найдите наименьшее такое число.

Задачу решили: 21
всего попыток: 26
Задача опубликована: 06.09.23 08:00
Прислал: avilow img
Источник: Сборник издательства "ЛЕГИОН"
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kf_GoldFish

В бесконечно убывающей последовательности 1; 1/2; 1/3; 1/4; 1/5; ... выберите такие десять чисел, которые образуют арифметическую прогрессию, а их сумма – наибольшая. Введите эту сумму.

Задачу решили: 23
всего попыток: 29
Задача опубликована: 05.02.24 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

В области, ограниченной параболой y = 8 − x2 и осью Ox, находится 25 целочисленных точек (см. рис.).

Парабола и целочисленные точки

При каком натуральном значении k количество точек с целочисленными координатами, находящимся внутри области, ограниченной параболой y = k − x2 и осью Ox равно 2024.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.