img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 149
всего попыток: 242
Задача опубликована: 14.05.09 18:10
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: putout (Дмитрий Лебедев)

Найти максимальное значение выражения

|...|x1x2|−x3|−x4|...−x998|−x999|,

где x1, x2, x3, x4, ..., x998, x999 — различные натуральные числа от 1 до 999.

Задачу решили: 236
всего попыток: 589
Задача опубликована: 14.05.09 18:10
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

Имеется 2009 мешочков с 1, 2, 3,..., 2008 и 2009 монетами. Каждый день разрешается взять из одного или нескольких мешочков по одинаковому числу монет. За какое минимальное число дней можно взять все монеты? 

Задачу решили: 84
всего попыток: 547
Задача опубликована: 14.05.09 18:10
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Сначала напишем на доске две единицы: 1 1. На втором шаге напишем между ними их сумму и получим: 1 2 1. На каждом следующем шаге будем вписывать между всеми соседними числами, написанными на предыдущих шагах, их суммы. Получим: 1 3 2 3 1, 1 4 3 5 2 5 3 4 1, 1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1,... Сколько раз мы напишем число 2009, если будем продолжать эту процедуру до бесконечности?

Задачу решили: 161
всего попыток: 594
Задача опубликована: 28.05.09 23:08
Прислал: demiurgos img
Источник: Г.Штейнгауз "Математический калейдоскоп"
Вес: 1
сложность: 4 img
класс: 6-7 img
баллы: 100

Из какого наименьшего числа квадратов, среди которых нет двух равных, можно сложить прямоугольник? (Квадратов должно быть больше одного.)

Если Вы считаете, что нельзя, то введите 0.

Задачу решили: 132
всего попыток: 1048
Задача опубликована: 22.05.09 17:53
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

На полу коридора длиной 120 метров лежат 25 ковровых дорожек общей длиной 600 метров. Каково максимально возможное число кусков пола, не застеленных дорожками?

Задачу решили: 144
всего попыток: 195
Задача опубликована: 17.09.09 09:00
Прислал: demiurgos img
Источник: А.К.Толпыго "Девяносто шесть"
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Найти среднее арифметическое всех натуральных чисел, десятичная запись которых состоит из 4-х четвёрок, 6-ти шестёрок и 9-ти девяток, записанных в любом порядке. (Например, 4699644466669999999.)

Задачу решили: 273
всего попыток: 721
Задача опубликована: 26.05.09 00:18
Прислал: demiurgos img
Источник: Г.Гамов, М.Стерн "Занимательные задачи"
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: marzelik

Долгое время я водил поезда по одному и тому же маршруту, и моя жена точно знала, когда я прибываю в родной город. Она подъезжала на автомобиле к вокзалу в ту самую минуту, когда мой поезд останавливался, и забирала меня. Однажды, из-за неразберихи с переходом на летнее время в разных штатах, я прибыл ровно на час раньше и решил пойти пешком навстречу жене. Она подобрала меня по дороге, а дома я обнаружил, что мы приехали на 20 минут раньше обычного. Сколько минут я шёл пешком?

Задачу решили: 123
всего попыток: 390
Задача опубликована: 29.05.09 17:49
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: julikV (Юлиан Ваннэ)

В стране 21 аэропорт. Авиационное сообщение между ними осуществляют несколько авиакомпаний, каждой из которых разрешается совершать любые рейсы между 5 аэропортами. При каком наименьшем числе авиакомпаний можно перелететь из любого аэропорта в любой другой без пересадки?

Задачу решили: 393
всего попыток: 675
Задача опубликована: 04.06.09 17:25
Прислал: demiurgos img
Источник: Г.Дьюдени "520 головоломок"
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Поезда, идущие в город Б, отправляются из города А с интервалом ровно 1 час с 6:15 до 23:15 и прибывают в Б ровно через 4 часа после своего отправления из А. Поезда, идущие в А, отправляются из Б с интервалом ровно 1 час с 6:45 до 23:45 и прибывают в А ровно через 4 часа после своего отправления из Б. Сколько встречных поездов на всём пути от А до Б увидят пассажиры дневного поезда, отправляющегося из А в 15:15?

Задачу решили: 76
всего попыток: 262
Задача опубликована: 05.06.09 17:15
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

В далёкой стране к власти пришёл военный диктатор, который хочет стать президентом, победив на демократических выборах, организованных по следующей системе. В первом туре все избиратели объединяются в равные по численности группы, и от каждой группы большинством голосов избирается представитель для голосования во втором туре. Во втором туре все избранные в первом туре представители объединяются в равные группы и в каждой группе выбирают её представителя для голосования в третьем туре. И так далее: в последнем туре представители избирают президента. В стране ровно 5 760 000 избирателей, среди которых n человек безоговорочно поддерживают диктатора (поскольку состоят в регулярной армии). При каком минимальном n можно так организовать выборы, чтобы диктатор гарантированно был избран президентом? (При равенстве голосов в следующий тур проходят независимые кандидаты.)

Диктатор сам заранее определяет количество туров и сколько представителей будут содержать группы в каждом туре — это число может меняться от тура к туру; он также может распределить своих сторонников по группам так, как ему выгодно. Любой избиратель может голосовать за себя, а сам диктатор входит в число n своих сторонников.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.