Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
161
всего попыток:
280
На ста карточках написаны различные целые числа от 1 до 100 (по одному числу на каждой карточке). Какое минимальное число карточек нужно наудачу взять, чтобы среди них обязательно нашлись три карточки, сумма чисел на которых делится на три?
Задачу решили:
340
всего попыток:
483
Из ряда натуральных чисел от 1 до 2009 вычеркнули все нечётные числа. Из оставшихся вычеркнули числа, стоявшие на нечётных местах. Эту процедуру повторяли до тех пор, пока не осталось только одно число. Найдите его.
Задачу решили:
72
всего попыток:
156
Дурацкое домино похоже на обычное, но состоит из 36 костей, на которых написаны всевозможные различные пары целых чисел от 0 до 7: 0-0, 0-1, 0-2,...,0-7, 1-1, 1-2,... Найдите наименьшее число цепочек, в которые можно выложить все кости дурацкого домино по обычному правилу — кости в цепочке прилегают друг к другу одинаковыми числами, например: 0-1, 1-1, 1-3, 3-7, 7-4. (Обычное домино состоит из 28 костей, на которых написаны все различные пары целых чисел от 0 до 6, все его кости можно выложить в одну цепочку.)
Задачу решили:
123
всего попыток:
168
Вычислите x2/(y+z)+y2/(x+z)+z2/(x+y), если x/(y+z)+y/(x+z)+z/(x+y)=1.
Задачу решили:
127
всего попыток:
209
В каждой клетке квадрата 4×4, нарисованного на клетчатой бумаге, написано одно целое число. Известно, что для любой клетки квадрата сумма чисел, написанных во всех соседних с нею клетках, равна 1. Найти сумму всех шестнадцати чисел. (Клетки называются соседними, если они имеют общую сторону.)
Задачу решили:
263
всего попыток:
324
На школьном вечере девочки и мальчики несколько раз танцевали парами. Каждая девочка танцевала 4 раза, а каждый мальчик — 3 раза. Всего на вечере было 112 школьников. Сколько было девочек?
Задачу решили:
113
всего попыток:
437
Четыре друга — Алёша, Боря, Валера и Гриша — бегали на лыжах по кругу. Алёша бежал быстрее Бори, Боря быстрее Валеры, а Валера быстрее Гриши. Стартовали и финишировали друзья одновременно, но Алёша 1 раз обогнал Борю, Боря 1 раз обогнал Валеру, а Валера 1 раз обогнал Гришу. Сколько раз Алёша обогнал Гришу?
Задачу решили:
65
всего попыток:
147
Какое наибольшее число костей домино можно выложить в цепь так, чтобы кости прилегали друг к другу числами, отличающимися на 1 (а не равными, как обычно); например: 00-15-43-46-55. (Домино состоит из 28 костей, на которых написаны всевозможные различные пары целых чисел от 0 до 6: 00, 01, 02, 03, 04, 05, 06, 11, 12,...)
Задачу решили:
164
всего попыток:
347
Сумма нескольких натуральных чисел равна 25. Найдите наибольшее возможное значение их произведения.
Задачу решили:
82
всего попыток:
206
Сколько понадобится четвёрок, чтобы записать в десятичной системе счисления все натуральные числа от 1 до 1111111111? (Последнее число состоит из 10 единиц.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|