Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
76
всего попыток:
262
В далёкой стране к власти пришёл военный диктатор, который хочет стать президентом, победив на демократических выборах, организованных по следующей системе. В первом туре все избиратели объединяются в равные по численности группы, и от каждой группы большинством голосов избирается представитель для голосования во втором туре. Во втором туре все избранные в первом туре представители объединяются в равные группы и в каждой группе выбирают её представителя для голосования в третьем туре. И так далее: в последнем туре представители избирают президента. В стране ровно 5 760 000 избирателей, среди которых n человек безоговорочно поддерживают диктатора (поскольку состоят в регулярной армии). При каком минимальном n можно так организовать выборы, чтобы диктатор гарантированно был избран президентом? (При равенстве голосов в следующий тур проходят независимые кандидаты.) Диктатор сам заранее определяет количество туров и сколько представителей будут содержать группы в каждом туре — это число может меняться от тура к туру; он также может распределить своих сторонников по группам так, как ему выгодно. Любой избиратель может голосовать за себя, а сам диктатор входит в число n своих сторонников.
Задачу решили:
82
всего попыток:
99
Два равных прямоугольника (один с синими сторонами, а другой — с красными) ограничивают на плоскости некоторый восьмиугольник. Найти максимум разности между суммой длин его красных сторон и суммой длин его синих сторон при условии, что диагонали прямоугольников равны 60.
Задачу решили:
82
всего попыток:
234
Квадрат на плоскости разбит на 25 маленьких одинаковых квадратов, через все вершины которых проходит некоторая ломаная (возможно самопересекающаяся). Каково минимальное число её звеньев?
Задачу решили:
73
всего попыток:
215
Сумма n нечётных чисел совпадает с их произведением. Какие значения может принимать n? В ответе введите число возможных значений n, удовлетворяющих неравенству 1 ≤ n ≤ 2009.
Задачу решили:
55
всего попыток:
74
Существуют ли 2009 последовательных натуральных чисел, среди которых ровно 10 простых?
Задачу решили:
24
всего попыток:
35
Большой прямоугольник разрезан на конечное число маленьких. (Стороны всех прямоугольников вертикальны или горизонтальны.) Известно, что у каждого маленького прямоугольника длина хотя бы одной стороны — целое число. Верно ли, что тогда и у большого прямоугольника хотя бы одна сторона имеет целую длину? (Если верно — доказать, если нет — привести пример.)
Задачу решили:
145
всего попыток:
199
Найдите максимально возможное целое значение отношения (x+y+z)2/(xyz), где x, y и z — положительные целые числа.
Задачу решили:
35
всего попыток:
46
Доказать, что степень двойки 2n при любом целом n>2 представляется в виде 2n=7x2+y2, где x и y — нечётные целые числа.
Задачу решили:
36
всего попыток:
61
Найдите действительные числа x, y и z, удовлетворяющие следующим уравнениям и неравенствам: x–2y–xy2=0, y–2z–yz2=0, z–2x–zx2=0, x>y>z. В ответе укажите значение x.
Задачу решили:
59
всего попыток:
357
Решите уравнение xy=yx в рациональных числах. В ответе укажите количество его различных решений, удовлетворяющих неравенствам: x>y, x>11/4.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|