Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
411
всего попыток:
556
Некто плыл на вёсельной лодке против течения. Под мостом его шляпа упала в воду. Через 15 минут гребец заметил пропажу и, не теряя времени, развернулся и поплыл вдогонку за шляпой, гребя в том же темпе. Он подобрал свою шляпу в 1 км ниже моста. Сколько км/ч составляет скорость течения реки?
Задачу решили:
393
всего попыток:
675
Поезда, идущие в город Б, отправляются из города А с интервалом ровно 1 час с 6:15 до 23:15 и прибывают в Б ровно через 4 часа после своего отправления из А. Поезда, идущие в А, отправляются из Б с интервалом ровно 1 час с 6:45 до 23:45 и прибывают в А ровно через 4 часа после своего отправления из Б. Сколько встречных поездов на всём пути от А до Б увидят пассажиры дневного поезда, отправляющегося из А в 15:15?
Задачу решили:
351
всего попыток:
404
Сколько квадратных сантиметров составляет площадь равнобедренной трапеции, если длина её средней линии равна 21 см, а диагонали — 29 см?
Задачу решили:
495
всего попыток:
1202
Один рыбак поймал 3 рыбы, а второй — 5. Когда они сварили из них уху, к ним подошёл знакомый грибник. Уха была съедена, грибник ушёл, а когда рыбаки стали собираться домой, оказалось, что грибник в благодарность за уху оставил им 8 грибов. Как рыбакам следует поделить грибы? (Рыбы одинаковые, грибы одинаковые, ухи все съели поровну.) В ответе укажите число грибов, который должен взять рыбак, поймавший 5 рыб.
Задачу решили:
340
всего попыток:
483
Из ряда натуральных чисел от 1 до 2009 вычеркнули все нечётные числа. Из оставшихся вычеркнули числа, стоявшие на нечётных местах. Эту процедуру повторяли до тех пор, пока не осталось только одно число. Найдите его.
Задачу решили:
263
всего попыток:
324
На школьном вечере девочки и мальчики несколько раз танцевали парами. Каждая девочка танцевала 4 раза, а каждый мальчик — 3 раза. Всего на вечере было 112 школьников. Сколько было девочек?
Задачу решили:
204
всего попыток:
703
Однажды на лестнице я нашёл тетрадь, в которой было написано сто следующих утверждений: 1. «В этой тетради не менее одного неверного утверждения.» 2. «В этой тетради не менее двух неверных утверждений.» 3. «В этой тетради не менее трёх неверных утверждений.» ............................................................... 100. «В этой тетради не менее ста неверных утверждений.» Сколько утверждений в тетради являются верными?
Задачу решили:
135
всего попыток:
159
Известно, что p, 4p2+1 и 6p2+1 — простые числа. Найдите наибольшее значение p.
Задачу решили:
130
всего попыток:
267
Перед Вами в ряд лежат 9 арбузов общим весом 70 кг. Для каждого арбуза (кроме первого и последнего) известен общий вес двух его соседей. У какого наибольшего числа арбузов можно однозначно определить вес?
Задачу решили:
85
всего попыток:
101
Внутри треугольника ABC нашлись две точки, одна из которых удалена от прямых AB, BC и AC на расстояния 20, 24 и 30 соответственно, а другая — на расстояния 29, 27 и 24. Найдите радиус окружности, вписанной в треугольник ABC.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|