Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
55
всего попыток:
74
Существуют ли 2009 последовательных натуральных чисел, среди которых ровно 10 простых?
Задачу решили:
98
всего попыток:
138
На n карточках написаны все числа от 1 до n (на каждой карточке — одно число). Карточки разложили на две стопки так, что сумма номеров любых двух карточек, лежащих в одной стопке, не является квадратом целого числа. Найти наибольшее значение n.
Задачу решили:
64
всего попыток:
376
На фестивале камерной музыки собрались 30 музыкантов. На каждом концерте некоторые из них выступают, а остальные слушают их из зала. Какое наименьшее число концертов нужно организовать, чтобы каждый музыкант смог послушать из зала всех остальных?
Задачу решили:
127
всего попыток:
200
От пристани А вниз по течению реки отправились одновременно катер и плот. Доплыв до пристани Б, катер немедленно повернул обратно и встретил плот ровно через 3 часа после отплытия от А. Доплыв до А, катер снова повернул и догнал плот ещё через 2 часа после первой встречи с ним. Через сколько минут после второй встречи с плотом катер причалит к Б?
Задачу решили:
45
всего попыток:
75
На какое максимальное число частей могут делить пространство n плоскостей? (Речь идёт о трёхмерном пространстве и двумерных плоскостях.)
Задачу решили:
155
всего попыток:
364
Найти максимальное семизначное число, которое состоит из трёх натуральных чисел, образующих арифметическую прогрессию и написанных друг за другом без пробелов в том же порядке, как и в прогрессии. (Пример такого числа: 8090100. Естественно, имеются в виду не числа, а их десятичные записи.)
Задачу решили:
91
всего попыток:
208
Погремушка состоит из синего кольца и надетых на него двенадцати шариков: девяти красных и трёх жёлтых. Сколько может быть выпущено различных погремушек? (Погремушка не меняется при её переворачивании и передвижении шариков по кольцу.)
Задачу решили:
161
всего попыток:
280
На ста карточках написаны различные целые числа от 1 до 100 (по одному числу на каждой карточке). Какое минимальное число карточек нужно наудачу взять, чтобы среди них обязательно нашлись три карточки, сумма чисел на которых делится на три?
Задачу решили:
80
всего попыток:
150
Пусть b(1)<b(2)<b(3)<... — такая строго возрастающая последовательность целых положительных чисел, что b(b(n))=3n для любого n. Найдите b(2009).
Задачу решили:
81
всего попыток:
196
В турнире по волейболу, проводившемся в один круг, для каждой пары команд нашлась третья, которая проиграла им обеим. Найти наименьшее число команд, участвовавших в турнире.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|