Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
896
всего попыток:
1663
Отец и сын катаются на коньках по кругу. Время от времени отец обгоняет сына. После того, как сын переменил направление своего движения на противоположное, они стали встречаться в 5 раз чаще. На сколько процентов скорость отца больше скорости сына?
Задачу решили:
577
всего попыток:
658
По аллее длиной 240 м навстречу друг другу идут двое детей. Скорость мальчика 1,5 м/с, а его младшей сестрёнки — 1 м/с. Между ними от одного к другому, не останавливаясь и заливаясь радостным лаем, бегает их собака со скоростью 5 м/с. Сколько метров пробежит собака прежде, чем дети встретятся?
Задачу решили:
170
всего попыток:
568
Двенадцать солдат должны как можно быстрее вернуться в свою часть, находящуюся от них в 17 км по просёлочной дороге. Друг одного из солдат берётся подвезти их на своём джипе, но одновременно он может взять лишь четверых. Скорость идущих пешком солдат — 5 км/ч, а джипа — 60 км/ч (дорога, увы, неважная). Через сколько минут все солдаты смогут вернуться в часть при наилучшей организации своего движения? Временем, затраченным на пересадки, можно пренебречь.
Задачу решили:
160
всего попыток:
618
Сначала первая труба наполняла бассейн ровно половину времени, необходимого двум другим трубам, чтобы полностью его наполнить. Потом вторая труба наполняла бассейн ровно половину времени, необходимого двум другим трубам, чтобы полностью его наполнить. Наконец, третья труба наполняла бассейн ровно половину времени, необходимого двум другим трубам, чтобы полностью его наполнить. В результате бассейн оказался наполненным за 2 часа. За сколько минут все три трубы наполняют бассейн, если работают одновременно?
Задачу решили:
123
всего попыток:
168
Вычислите x2/(y+z)+y2/(x+z)+z2/(x+y), если x/(y+z)+y/(x+z)+z/(x+y)=1.
Задачу решили:
111
всего попыток:
171
На доске написаны 13 чисел: 0, 1, 2, ..., 12. Среди них выбирают два каких-то числа a и b, стирают их, а вместо них пишут одно число ab+a+b. Описанную процедуру повторяют 12 раз. Найдите наибольшее число, которое может остаться на доске.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|