img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: makar243 добавил комментарий к решению задачи "Кружевная салфетка" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 1
всего попыток: 4
Задача опубликована: 20.05.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 2
сложность: 3 img
баллы: 100
Темы: алгоритмыimg

Широко известна игра, где один из участников задумывает целое число, а другой пытается его угадать, задавая вопросы. В этой задаче исследуется вариант такой игры, когда задумывают натуральное число из промежутка [1,n], а в качестве вопросов разрешается называть натуральные числа из этого же интервала. При этом стоимость каждого вопроса равна названному числу. Допускаются ответы трех видов:

  1. Ты назвал число меньше задуманного.
  2. Ты угадал!
  3. Ты назвал число больше задуманного.

Требуется определить  задуманное число и при этом минимизировать суммарную стоимость вопросов (в дальнейшем – цена игры). Для данного числа n назовем стратегию оптимальной, если она минимизирует цену игры для самого неудачного задуманного числа.

Например, при n=3 наилучшим первым ходом будет число "2". После этого при любом ответе можно будет точно определить задуманное число, поэтому больше вопросов не потребуется, и цена игры будет равна 2.

Если n=8, мы могли бы выбрать в качестве стратегии "бинарный поиск". Если первым ходом мы назовем число "4", а задуманное число будет больше, чем 4, нам потребуется еще два вопроса. Пусть вторым ходом мы называем число "6". Если задуманное число больше, чем 6, нам потребуется еще один ход, скажем, "7", и цена игры составит 4+6+7=17.

Мы можем существенно улучшить нашу стратегию для n=8, если первым ходом назовем число "5". Если задуманное число больше, чем 5, то вторым ходом мы можем назвать число "7", и этого будет достаточно для нахождения задуманного. Тогда цена игры составит 5+7=12. Если же задуманное число меньше, чем 5, то для его определения достаточно  вторым и третьим ходом назвать "3" и "1", а цена игры составит 5+3+1=9. Поскольку 12 > 9, в худшем случае цена игры при этой стратегии будет равна 12. Получается, что данная стратегия более выгодна, чем предыдущая, и оказывается, что она оптимальна, то есть никакая другая стратегия не может гарантировать для n=8 результат меньший, чем 12.

Пусть C(n) – максимальная цена игры, которая может получиться для оптимальной стратегии в худшем случае. 

Тогда C(1) = 0, C(2) = 1, C(3) = 2 и C(8) = 12.

Можно подсчитать, что  C(100) = 400.

Найдите С(500000).

 
Задачу решили: 0
всего попыток: 0
Задача опубликована: 10.06.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

На каждую клетку доски N×N положили по шашке, окрашенной в белый цвет с одной стороны и в черный цвет с другой.

Каждым ходом разрешается перевернуть одну шашку, а вместе с нею N-1 шашек, стоящих  на одной с ней вертикали, и N-1 шашек, стоящих  на одной с ней горизонтали. Таким образом, каждым ходом игрок должен перевернуть 2×N-1 шашку. Игра заканчивается, когда все шашки будут стоять белой стороной вверх. Ниже приведен пример игры для доски 5×5.

eu331.gif  

Несложно проверить, чтобы закончить игру из данной начальной позиции, нужно как минимум 3 хода.

Пусть строки и столбцы перенумерованы целыми числами от 0 до N-1.

Построим на доске N×N начальную конфигурацию CN. Для этого на клетку с координатами x и y положим шашку черной стороной вверх, если (N-1)2≤x2+y2<N2, и белой стороной вверх в противном случае. Конфигурацию C5 мы видели в приведенном примере.

Пусть T(N) – минимальное количество ходов, необходимых для окончания игры из начального положения CN (если это невозможно T(N) = 0).

Ясно , что T(1)=T(2)=1. Мы видели, что T(5)=3. Можно проверить, что T(10)=29, а T(1000)=395253.

Найдите сумму T(k!) для 1≤k≤12.

 
Задачу решили: 2
всего попыток: 9
Задача опубликована: 24.06.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Любое натуральное число может быть разбито на слагаемые вида 2i×3j, где i,j ≥0, но в этой задаче мы будем рассматривать лишь те разбиения, у которых ни одно слагаемое не кратно другому. В дальнейшем будем называть такие разбиения специальными.

Например, разбиение числа 17 = 2 + 6 + 9 = (21×30 + 21×31 + 20×32) не будет специальным, поскольку 6 кратно 2. Разбиение 17 = 16 + 1 = (24×30 + 20×30) тоже не специальное, так как 16 кратно 1. У числа 17 есть только одно специальное разбиение, а именно 8 + 9 = (23×30 + 20×32).

Некоторые числа имеют несколько специальных разбиений. Например, число 11 имеет два специальных разбиения:

11 = 2 + 9 = (21×30 + 20×32

11 = 8 + 3 = (23×30 + 20×31)

Обозначим через P(n) количество специальных разбиений числа n. Так, P(11) = 2.

Можно подсчитать, что сумма простых чисел q<100, для которых P(q)=2 равна 641.

Найдите сумму простых q < 1000000, для которых P(q)=2.

Задачу решили: 9
всего попыток: 14
Задача опубликована: 15.07.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: TALMON (Тальмон Сильвер)

Вагоны поезда обозначены буквами латинского алфавита: A,B,C,D..., и последовательность вагонов в железнодорожном составе можно задать с помощью соответствующей цепочки букв.

В правильно сформированном составе вагоны должны следовать алфавитном порядке. Добиваются этого на сортировочной станции, где установлен большой поворотный круг.

Когда состав въезжает на круг, несколько последних вагонов отцепляют, после чего локомотив с остальными вагонами съезжает с круга. Вагоны, стоящие на круге, поворачивают на 180 градусов и вновь прицепляют в хвост состава, но уже в обратном порядке. Эту операцию повторяют несколько раз, пока не достигают желаемого результата.

В некоторых случаях сформировать состав совсем просто. Например, когда исходный порядок вагонов ADCB, вагоны можно расцепить между A и D, затем развернуть фрагмент DCB, и, наконец, сцепить вагоны в нужном порядке. Результат достигается всего за один шаг, т.е. за один поворот круга на 180 градусов.

Возможно, процесс можно оптимизировать, но машинист пользуется совсем простым алгоритмом. Сначала он стремиться прицепить вагон A следом за паровозом, затем следом за ним вагон B, и так далее.

Машинист выяснил, что для состава из четырех вагонов потребуется не более 5 шагов. Максимальное количество - 5 операций - требуется для двух начальных последовательностей, а именно DACB и DBAC. Последовательности вагонов, требующие наибольшего количества операций для упорядочения, будем называть пессимальными.

Порядок формирования состава для начальной последовательности  DACB показан на рисунке.

eu336.png  

Для состава из шести вагонов машинист составил список пессимальных последовательностей. Список содержал 24 последовательности. Последовательности он расположил в алфавитном порядке, и цепочка DFAECB оказалась на десятом месте от начала.

Представьте, что вам поручили составить список пессимальных последовательностей для составов из 11 вагонов и упорядочить получившийся список в алфавитном порядке.

На каком месте в списке окажется последовательность CIAKBGHFJDE?

Задачу решили: 3
всего попыток: 5
Задача опубликована: 16.09.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Последовательность Голомба {G(n)}  определяют как единственную неубывающую последовательность натуральных чисел, содержащую ровно G(n)  вхождений каждого натурального числа n.
Вот несколько первых значений G(n):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
1 2 2 3 3 4 4 4 5 5 5 6 6 6 6 ...

Можно подсчитать, что G(210) = 87, G(220) = 6320, и что ΣG(2n) = 857297 при 1 ≤ n < 30.

Найдите ΣG(2n)для 1 ≤ n < 60.

Задачу решили: 6
всего попыток: 8
Задача опубликована: 23.09.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100

Рассмотрим нечетное число 225 = 32 × 52.
2252 = 50625 = 34 × 54 = 92 × 252. Поэтому функция Эйлера φ(50625) = 2 × 33 × 4 × 53 = 23 × 33 × 53 .
Итак, число  50625 является квадратом, а φ(50625) является кубом.
Найдите сумму нечетных n, 1 < n < 1010 , для которых функция Эйлера φ(n2) является кубом натурального числа.

Задачу решили: 10
всего попыток: 22
Задача опубликована: 14.10.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MakcuM (Максим Владимирович)

Возьмем матрицу n×n, выберем из нее n элементов так, чтобы никакие два из них не стояли в одной строке или столбце, и найдем их сумму. Минимальное значение такой суммы будем называть матричной суммой для данной матрицы.
Например, для матрицы:

  7  53 183 439 863
497 383 563  79 973
287  63 343 169 583
627 343 773 959 943
767 473 103 699 303

матричной суммой будет число 1075=7+79+343+343+303.

Найдите матричную сумму для матрицы:

  7  53 183 439 863 497 383 563  79 973 287  63 343 169 583
627 343 773 959 943 767 473 103 699 303 957 703 583 639 913
447 283 463  29  23 487 463 993 119 883 327 493 423 159 743
217 623   3 399 853 407 103 983  89 463 290 516 212 462 350
960 376 682 962 300 780 486 502 912 800 250 346 172 812 350
870 456 192 162 593 473 915  45 989 873 823 965 425 329 803
973 965 905 919 133 673 665 235 509 613 673 815 165 992 326
322 148 972 962 286 255 941 541 265 323 925 281 601  95 973
445 721  11 525 473  65 511 164 138 672  18 428 154 448 848
414 456 310 312 798 104 566 520 302 248 694 976 430 392 198
184 829 373 181 631 101 969 613 840 740 778 458 284 760 390
821 461 843 513  17 901 711 993 293 157 274  94 192 156 574
 34 124   4 878 450 476 712 914 838 669 875 299 823 329 699
815 559 813 459 522 788 168 586 966 232 308 833 251 631 107
813 883 451 509 615  77 281 613 459 205 380 274 302  35 805

Задачу решили: 8
всего попыток: 16
Задача опубликована: 21.10.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MakcuM (Максим Владимирович)

Запишем число 57 в системах счисления по основанию 4 и 28:

5710=3214=2128

В обоих случаях 

  • последней цифрой оказалась единица, 
  • цифры в записи числа убывают, 
  • каждая последующая цифра меньше предыдущей на единицу. 

При выполнении этих условий будем говорить, что число имеет специальный вид в данной системе счисления.

Так, число 57 имеет специальный вид в системах счисления с основаниями 4 и 28.

Существует пять натуральных чисел 1<n<500, имеющих специальный вид хотя бы в двух системах счисления, а именно 57, 121, 209, 321 и 457. Их сумма равна 1165.

Найдите сумму n (1<n<1012), имеющих специальный вид хотя бы в двух системах счисления.

Задачу решили: 8
всего попыток: 9
Задача опубликована: 28.10.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: MakcuM (Максим Владимирович)

В этой задаче мы будем рассматривать натуральные числа, имеющие ровно три простых делителя. Например, число 240 имеет простые делители 2,3 и 5. Это наибольшее число, не превышающее 250, имеющее эти три простых делителя и не имеющее других.

Для различных простых чисел p, q и r обозначим через M(p,q,r,N) наибольшее натуральное число, не превышающее N, которое делится на p, q и r, но не имеет других простых делителей. Если таких чисел нет, будем считать, что M(p,q,r,N)=0.

Например:

  • M(2,3,5,250)=240.
  • M(2,3,7,250)=168, а не 210, поскольку число 210 имеет 4 простых делителя.
  • M(3,7,13,250)=0, поскольку нет натуральных чисел, не превышающих 250, которые делятся на 3, 7 и 13.

Пусть S(N) – сумма различных значений M(p,q,r,N) для всех сочетаний p, q и r. Так, S(250)= 4588.

Найдите  S(10 000 000).

Задачу решили: 20
всего попыток: 24
Задача опубликована: 04.11.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Многие числа могут быть представлены в виде суммы куба и квадрата, а некоторые из них даже несколькими способами.
Рассмотрим число 37873.
Во-первых, оно может быть записано в виде суммы куба и квадрата тремя способами:

37873 = 183+1792 = 223+1652 = 333+442

Во-вторых, оно является палиндромом, то есть его десятичная запись читается слева направо и справа налево одинаково.

Найдите сумму палиндромов, не превышающих миллиарда, которые можно представить в виде суммы куба и квадрата не менее чем тремя способами.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.