img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Линейка и окружность" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 7
всего попыток: 13
Задача опубликована: 28.03.11 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Даны наборы чисел (xn, yn, rn), n=1,...100, задающие окружности с центром в точке с координатами (xn, yn)  и радиусом rn.  Эти числа выбираются так двухзначные числа состоящие из цифр после запятой  в записи числа π, стоящие соответственно для xn - на n и n+1 местах,  для yn - на n+2 и n+3 местах, и rn - на n+4 и n+5 местах. Таким образом, x1=14, y1=15, r1=92 и т.д. Найдите количество точек пересечения (включая точки касания) этих окружностей.

Задачу решили: 2
всего попыток: 58
Задача опубликована: 30.03.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

На рисунке изображен большой круг. Его радиус равен 10000.

Внутри большого круга изображены три светло-коричневых круга поменьше. Эти три круга и большой круг попарно касаются друг друга.

Между соприкасающимися кругами образовались четыре промежутка, в которые тоже можно вписать круги. При этом появляются новые промежутки, в которые можно вписывать круги вновь и вновь сколь угодно долго.
Найдите суммарную площадь всех построенных таким образом кругов (кроме одного исходного круга самого большого размера), радиус которых больше 1. Результат округлите до целого.

Задачу решили: 0
всего попыток: 0
Задача опубликована: 31.03.11 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Треугольники с целыми длинами строн называются почти прямоугольными, если a2+b2=c2±1 (a≤b≤c). Сколько существут различных почти прямоугольных треугольников с периметром меньшем 1015.  

Задачу решили: 11
всего попыток: 31
Задача опубликована: 09.04.11 14:01
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: MakcuM (Максим Владимирович)

Рассмотрим числа, обладающие следующими тремя свойствами:

  1. Число представимо в виде p3q2, где p и q - различные простые числа (например, 72, 200, 500)
  2. Число содержит подстроку "200" в своей десятичной записи (например, 200, 1200, 1202005657)
  3. Изменив в десятичной записи числа одну цифру, невозможно получить простое число (например, 200, 325, 1268)

Первые два числа, удовлетворяющие всем трем условиям – это 200 и 1992008. Сумма первых двух чисел, обладающих одновременно свойствами 1, 2 и 3 равна 1992208.

Найдите сумму первых двухсот чисел, обладающих одновременно свойствами 1, 2 и 3.

Задачу решили: 6
всего попыток: 15
Задача опубликована: 04.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Для числового множества A обозначим через sum(A) сумму его элементов.
Например, если множество B = {1,3,6,8,10,11}, то sum(B)= 1+3+6+8+10+11=39.

Вычислим суммы для всех 20 трехэлементных подмножеств множества B:
sum({1,3,6}) = 10,
sum({1,3,8}) = 12,
sum({1,3,10}) = 14,
sum({1,3,11}) = 15,
sum({1,6,8}) = 15,
sum({1,6,10}) = 17,
sum({1,6,11}) = 18,
sum({1,8,10}) = 19,
sum({1,8,11}) = 20,
sum({1,10,11}) = 22,
sum({3,6,8}) = 17,
sum({3,6,10}) = 19,
sum({3,6,11}) = 20,
sum({3,8,10}) = 21,
sum({3,8,11}) = 22,
sum({3,10,11}) = 24,
sum({6,8,10}) = 24,
sum({6,8,11}) = 25,
sum({6,10,11}) = 27,
sum({8,10,11}) = 29
.
Некоторые из этих сумм встречаются несколько раз, а некоторые – лишь однажды.
Выпишем в порядке возрастания все уникальные суммы (встречающиеся ровно один раз):
10,12,14,18,21,25,27,29
Наибольшая разница между соседними числами в этой последовательности равна 4 (она встречается в последовательности дважды: 4=18-14 и 4=25-21). Обозначим найденную таким образом величину как D(A,m), где A – исходное множество, а m – количество элементов в подмножестве. Таким образом, D(B,3)=4.

Теперь рассмотрим множество S, состоящее из 120 элементов:
S = {12, 22, ... , 1202}.
Множество S имеет 96614908840363322603893139521372656 подмножеств, состоящих из 60 элементов. Найдите D(S,60) – наибольшую разность между последовательными уникальными суммами 60-элементных подмножеств множества S.

Задачу решили: 6
всего попыток: 6
Задача опубликована: 06.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100

Стороны правильного треугольника ABC представляют собой зеркала, обращенные отражающей поверхностью вовнутрь. В вершинах треугольника расположены бесконечно малые щели, через которые может пройти лазерный луч.
На рисунке показан путь луча, который прошел сквозь щель в вершине C, 11 раз отразился от зеркал и вышел из треугольника через ту же вершину C. Существует всего 2 пути, по которым луч может войти и выйти через вершину C, испытав при этом 11 отражений: один – это тот, что изображен на рисунке, а другой – направленный ему навстречу.

Очевидно, что есть только одна траектория, по которой луч входит и выходит через вершину C, отразившись лишь однажды.
Существует 40 траекторий, по которым луч может пройти через вершину C, отразиться от зеркал 697 раз и выйти из треугольника через ту же вершину.
Существует 9355 траекторий, по которым луч может пройти через вершину C, отразиться от зеркал не более 700 раз и выйти из треугольника через ту же вершину.
Сколько существует траекторий, по которым луч может пройти через вершину C, отразиться от зеркал не более 100000 раз и выйти из треугольника через ту же вершину.

Задачу решили: 12
всего попыток: 15
Задача опубликована: 08.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим треугольник Паскаля:

 1 
 1  1 
 1  2  1 
 1  3  3  1 
 1  4  6  4  1 
 1  5  10  10  5  1 
 1  6  15  20  15  6  1 
1  7  21  35  35  21  7  1
.........

В первых восьми его строках содержится 12 различных чисел:
1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 21 и 35.
Назовем натуральное число свободным от квадратов, если оно не кратно никакому квадрату простого числа. В первых восьми строках  треугольника Паскаля содержится 10 различных чисел, свободных от квадратов, а два числа – 4 и 20 – не свободны от квадратов.
Сколько различных чисел, свободных от квадратов, содержится в первых 500 строках треугольника Паскаля?

Задачу решили: 18
всего попыток: 27
Задача опубликована: 11.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Числами Хэмминга называются такие натуральные числа, у которых нет простых делителей, больших, чем 5. Вот первые числа Хэмминга: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15. Их сумма равна 75. Существует 1105 чисел Хэмминга, не превышающих 108. Их сумма равна 14954859000

Если у натурального числа нет простых делителей, превышающих n, мы будем называть его обобщенным числом Хэмминга типа n. Например, числа Хэмминга являются обобщенными числами Хэмминга типа 5.

Найдите сумму обобщенных чисел Хэмминга типа 70, не превышающих 2?109.

Задачу решили: 30
всего попыток: 35
Задача опубликована: 15.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

На доске записали 17-значное число, являющееся полным квадратом. Затем 8 цифр стерли и заменили их звездочками. Вот, что получилось:
1 * 4 * 1 * 4 * 1 * 4 * 1 * 4 * 1
Найдите сумму всех 17-значных чисел, которые могли быть написаны на доске первоначально.

Задачу решили: 6
всего попыток: 8
Задача опубликована: 20.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100

Рассмотрим движение робота. Его траектория представляет собой гладкую кривую, составленную из 72-градусных дуг определенного радиуса. На каждом шаге робот может двигаться по часовой стрелке или против, но не может поворачиваться на месте.

На рисунке показан замкнутый путь робота, состоящий из 25 дуг и начинающийся в направлении "на север", которое обозначено стрелкой. Всего замкнутых траекторий такой длины, начинающихся в северном направлении можно насчитать 70932.

Сколько существует замкнутых траекторий, состоящих не более чем из 70 дуг, и начинающихся в северном направлении. (По одной дуге робот может проходить несколько раз).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.