img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Sam777e добавил решение задачи "Две цифры из ста" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 5
всего попыток: 7
Задача опубликована: 14.05.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Определим уравновешенную статую как полимино, удовлетворяющее следующим требованиям:

  • Статуя порядка n состоит из n единичных квадратов — блоков и еще одного квадрата — постамента (всего — n+1 квадрат).
  • Центр постамента находится в начале координат (x = 0, y = 0).
  • Центры всех блоков имеют положительные координаты y, так что постамент находится ниже остальных квадратов.
  • Центр масс уравновешенной статуи имеет нулевую горизонтальную координату x.

Подсчитаем количество различных уравновешенных статуй порядка n. При этом статуи, симметричные друг другу относительно вертикальной оси, будем считать одинаковыми. На рисунке показаны уравновешенные статуи порядка 6. Объединив симметричные, получим 18 различных уравновешенных статуй.

eu275.gif

Пусть Z(n) – количество уравновешенных статуй порядка n. Тогда  Z(6)=18, Z(10)=964, Z(15)= 360505.

Найдите ∑Z(n)  для 1 ≤ n ≤ 18.

Задачу решили: 3
всего попыток: 12
Задача опубликована: 30.07.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100

Рассмотрим метод кодирования черно-белых изображений при помощи квадрадеревьев для квадратного изображения размером 2N×2N  однобитовых пикселей. Сгенерируем кодирующую последовательность из нулей и единиц по следующим правилам:

  • Первый бит относится ко всему квадрату 2N ×2N
  • "0" означает ветвление дерева, и текущий квадрат 2n×2n разделяется на четыре меньших квадрата размером 2n-1×2n-1. Следующие за нулем биты содержат описание этих четырех квадратов, сначала левого верхнего, затем правого верхнего, левого нижнего и правого нижнего (именно в этой последовательности).
  • "10" означает, что данный квадрат содержит только черные пиксели;
  • "11" означает, что данный квадрат содержит только белые пиксели.

В качестве примера рассмотрим изображение размером 4×4, где цветными крестиками обозначены точки ветвления.

eu287.png  

В принципе, изображение может быть закодировано несколькими различными битовыми последовательностями, например, "001010101001011111011010101010" или "0100101111101110". Первая из этих последовательностей содержит 30 битов, а вторая – только 16, и эта длина является минимальной.

Рассмотрим теперь изображения размером 2N×2N, построенные следующим образом:

  • Пиксель с координатами x=0, y=0 соответствует левому нижнему углу изображения,
  • Если  (x-2N-1)2+(y-2N-1)2 ≤ 22N-2 , то соответствующий пиксель черного цвета,
  • Остальные пиксели - белые.

Для изображения данного типа с N=24 найдите кодирующую последовательность минимальной длины. Сколько единиц она содержит?

 

Задачу решили: 6
всего попыток: 7
Задача опубликована: 05.11.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

В сильно  упрощенной модели белки можно рассматривать как цепочки гидрофобных (H) и полярных (P) элементов, например HHPPHHHPHHPH.

В этой задаче мы будем считать, что ориентация белка существенна, то есть белки HPP и PPH мы будем считать различными, а количество белков из n элементов будет равно 2n.

Гидрофобные элементы притягиваются друг к другу, и белок принимает наиболее энергетически выгодную конфигурацию так, чтобы максимизировать количество связей H-H. 

Поэтому элементы H часто находятся внутри белка, а элементов P больше снаружи. Конечно, настоящие белки имеют трехмерные конфигурации, но мы еще несколько упростим модель, ограничившись двумя измерениями и предполагая, что звенья цепочки занимают места в клетках квадратной решетки.

На рисунке показаны две конфигурации одного белка (связи H-H отмечены красными точками)

eu300.gif        

В конфигурации слева сформировалось всего лишь 6 связей H-H, поэтому такая конфигурация энергетически невыгодна и не может встретиться в природе.

Правая конфигурация имеет девять связей H-H, и это максимальное значение для такой цепочки. Будем называть оптимальными те конфигурации, которые обеспечивают максимальное количество связей H-H для данной цепочки.

77 из 256 восьмиэлементных цепочек в оптимальной конфигурации имеют более 4 связей H-H.

Сколько цепочек, состоящих из 15 элементов, в оптимальной конфигурации будут иметь более 9 связей H-H?

Задачу решили: 6
всего попыток: 8
Задача опубликована: 17.12.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Рассмотрим игру для двух участников. Игровое поле представляет собой полоску из n клеток белого цвета. Ходы совершают по очереди. Каждым ходом игрок должен закрасить любые две соседние белые клетки. Проигрывает тот, кто не может сделать ход.

  • При n=1 первый игрок автоматически проигрывает, поскольку не может сделать ни одного хода.
  • При n=2 есть только один ход, который автоматически ведет к победе.
  • При n=3 первый игрок может выбрать один из двух различных ходов, и оба они ведут к немедленной победе.
  • При n=4 есть три варианта хода. Среди них есть один выигрышный ход, когда игрок закрашивает две средние клетки.
  • При n=5 есть четыре варианта хода (они показаны на рисунке красным цветом), но все они ведут к поражению: второй игрок (показан синим цветом) всегда может выиграть.

eu306.png

Таким образом, первые три значения n, при которых первый игрок выигрывает – это 2,3 и 4, а первые два проигрышных значения – это 1 и 5. Третье проигрышное значение n=9, десятое: n=43.

Найдите миллионное значение n, при котором второй игрок всегда может победить.

 

Задачу решили: 4
всего попыток: 4
Задача опубликована: 04.02.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Рассмотрим игру на прямоугольной клетчатой доске. Одна клетка доски не занята, на остальных стоят фишки. Каждым ходом игрок передвигает на свободную клетку одну из соседних (по вертикали или горизонтали) фишек. В начале игры пустая клетка находится в правом нижнем углу, в левом верхнем углу находится красная фишка, а на остальных клетках стоят синие фишки. Цель игры — переместить красную фишку в правый нижний угол за наименьшее количество ходов. На рисунке ниже показана последовательность ходов для доски 2 х 2.

eu313-1.gif

Пусть S(m,n) -минимальное количество ходов, необходимое для перемещения красной фишки в правый нижний угол для доски m х n. Можно проверить, что S(5,4) = 25.

eu313-2.gif

Существует всего 256 различных досок с сторонами m и n, не превышающими 100, для которых S(m,n) является квадратом натурального числа.

Подсчитайте количество досок со сторонами m и n, не превышающими 1010, для которых S(m,n) является квадратом натурального числа.

Задачу решили: 14
всего попыток: 29
Задача опубликована: 18.02.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Shamil

 eu315.gif

Сэм и Макс решили сделать из электронных часов прибор для демонстрации последовательности математических вычислений. Для испытания они запрограммировали его на расчет однозначной суммы цифр натуральных чисел. Напомним, что для вычисления однозначной суммы цифр суммируют все десятичные цифры числа, затем все десятичные цифры результата, и так далее, пока не получится однозначное число.

Когда в прибор передают очередное число, оно отображается индикатором, затем отображаются все промежуточные значения, и, наконец, - результат.

Например, если взять число 137, индикатор покажет последовательность "137"→"11"→"2", а затем погаснет до прихода нового числа.

Каждая цифра на индикаторе состоит из нескольких отрезков, как показано на рисунке.

Например, цифра "8" использует семь отрезков – четыре вертикальных и три горизонтальных, цифра "1" состоит из двух вертикальных, а именно, правого верхнего и правого нижнего, а цифра "4" – из четырех отрезков: левого верхнего, правого верхнего и правого нижнего вертикальных и горизонтального, лежащего посередине.

Индикатор потребляет электроэнергию, только когда отрезки включаются или выключаются. Так, включение или выключение числа 2 требует пяти единиц энергии, а числа 7 – четырех единиц энергии.

Сэм и Макс предложили разные конструкции прибора.

Работа прибора Сэма показана на картинке слева. Когда  этот прибор получает число 137, оно отображается на индикаторе, затем полностью гаснет, затем прибор показывает число 11, которое также гаснет, и, наконец, загорается число 2, которое тоже гаснет

В таблице приведен расчет энергопотребления прибора Сэма для числа 137.

"137":(2 + 5 + 4) ?× 2 = 22 переключений ("137" включается и выключается).

"11":(2 + 2) × 2 = 8 переключений ("11" включается и выключается).

"2":(5) × 2 = 10 переключений ("2" включается и выключается).

Всего получается 40 переключений и, соответственно, тратится 40 единиц энергии.

Прибор Макса (изображен справа) работает по-другому. Он не выключает каждый раз весь индикатор, а выбирает только те отрезки, которые не понадобятся для следующего числа.

Вот, как он будет работать с числом 137:

"137":2 + 5 + 4 = 11 переключений (включение трех цифр числа "137"), 7 переключений (выключение отрезков, не нужных для числа "11"). 0 переключений (число "11" уже и так горит)

"11":3 переключения (выключение первой единички и нижней части второй единички; верхняя часть остается гореть, поскольку она нужна для цифры "2").

"2":4 переключения (включение оставшихся отрезков цифры "2"), 5 переключений (выключение цифры "2").

Итого: 30 переключений.

Понятно, что прибор Макса тратит меньше энергии. Так, при подсчете однозначной суммы цифр для числа 137 экономия составляет 10 единиц энергии.

Найдите общую экономию энергии при подсчете однозначной суммы цифр для всех простых чисел, не превышающих  2×107.

Задачу решили: 1
всего попыток: 1
Задача опубликована: 22.04.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 2
сложность: 2 img
баллы: 100

Обозначим через f(n) количество способов, которыми можно построить башню 3×3×n из блоков 2×1×1.

Блоки можно вращать произвольным образом. При этом башни, отличающиеся поворотом или симметрией, считаются различными.

Например, 

f(2) = 229,

f(4) = 117805,

f(6) = 64647289,

f(63) mod 123456789 = 75292539,

f(66) mod 123456789 = 56150940.

Здесь a mod q означает остаток от деления a на q.

Найдите f(612345) mod 123456789.

 
Задачу решили: 0
всего попыток: 0
Задача опубликована: 10.06.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

На каждую клетку доски N×N положили по шашке, окрашенной в белый цвет с одной стороны и в черный цвет с другой.

Каждым ходом разрешается перевернуть одну шашку, а вместе с нею N-1 шашек, стоящих  на одной с ней вертикали, и N-1 шашек, стоящих  на одной с ней горизонтали. Таким образом, каждым ходом игрок должен перевернуть 2×N-1 шашку. Игра заканчивается, когда все шашки будут стоять белой стороной вверх. Ниже приведен пример игры для доски 5×5.

eu331.gif  

Несложно проверить, чтобы закончить игру из данной начальной позиции, нужно как минимум 3 хода.

Пусть строки и столбцы перенумерованы целыми числами от 0 до N-1.

Построим на доске N×N начальную конфигурацию CN. Для этого на клетку с координатами x и y положим шашку черной стороной вверх, если (N-1)2≤x2+y2<N2, и белой стороной вверх в противном случае. Конфигурацию C5 мы видели в приведенном примере.

Пусть T(N) – минимальное количество ходов, необходимых для окончания игры из начального положения CN (если это невозможно T(N) = 0).

Ясно , что T(1)=T(2)=1. Мы видели, что T(5)=3. Можно проверить, что T(10)=29, а T(1000)=395253.

Найдите сумму T(k!) для 1≤k≤12.

 
Задачу решили: 0
всего попыток: 12
Задача опубликована: 08.07.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Несколько чашек расставлены по кругу, и в каждой из них лежит одна горошина. Игрок совершает ходы следующим образом. Он берет все горошины из одной чашки и раскладывает их одну за другой в чашки, следующие за ней по часовой стрелке. При каждом следующем ходе горошины берут из той чашки, куда была положена последняя горошина на предыдущем ходе. Игра заканчивается, когда возвращается к исходному положению, т. е. в с каждой чашке снова оказывается по одной горошине. Вот игра для случая пяти чашек:

eu335.gif

   

Как видно, для пяти чашек игра заканчивается за 15 ходов.

Обозначим через M(x) количество ходов в игре с  x  чашками. Тогда M(5) = 15. Можно проверить, что M(100) = 10920.

Найдите остаток от деления \sum_{k=1}^{10^{18}}M(2^{k}) на 79.

Задачу решили: 1
всего попыток: 1
Задача опубликована: 29.07.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Будем вырезать из бумаги в клетку прямоугольники размером w × h клеток, где w и h – натуральные числа. Некоторые из них можно разрезать по клеточкам на две части так, что из этих частей составится новый прямоугольник другого размера.
Например, прямоугольник размером 9 × 4 клетки можно превратить в прямоугольники 18 × 2, 12 × 3 или 6 × 6, как показано на рисунке:

eu338.png
Аналогично, из прямоугольника 9 × 8 можно сделать прямоугольники размером 18 × 4 и 12 × 6 клеток.
Обозначим через F(w, h) количество различных прямоугольников, которые можно получить из прямоугольника размером w × h клеток. При этом прямоугольники с размерами a × b и b × a считаются одинаковыми, а прямоугольники, конгруэнтные исходному, не учитываются.
Тогда получим: F(2,1) = 0, F(2,2) = 1, F(9,4) = 3 и F(9,8) = 2.
Пусть G(N)=Σ F(w, h) для всех 0 < h ≤ w ≤ N.
Можно проверить, что G(10) = 55, G(103) = 971745, а G(105) = 9992617687.
Найдите ΣG(10k), где 1≤k≤12. В качестве ответа укажите 8 младших цифр результата.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.