img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: georgp решил задачу "Футбольный турнир" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 8
всего попыток: 16
Задача опубликована: 31.10.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Дроби, у которых числитель меньше знаменателя, называют правильными. Для каждого знаменателя d существует d-1 правильная дробь. Например, для d=15 это

1/15 , 2/15 , 3/15 , 4/15 , 5/15 , 6/15 , 7/15 , 8/15 , 9/15 , 10/15, 11/15, 12/15, 13/15, 14/15.

Из 14 правильных дробей со знаменателем 15 лишь 8 оказываются несократимыми. Назовем коэффициентом несократимости R(d) знаменателя d отношение количества несократимых правильных дробей со знаменателем d к общему количеству правильных дробей со знаменателем d. Например, R(15)= 8/14 =4/7. Заметим, что d=15 – это наименьший нечетный знаменатель, для которого R(d)<2/3.

Найдите наименьший нечетный знаменатель d, для которого R(d)< 19945/60961.

Задачу решили: 3
всего попыток: 5
Задача опубликована: 07.11.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Назовем коэффициентом несократимости знаменателя d отношение количества несократимых правильных дробей со знаменателем d к общему количеству правильных дробей со знаменателем d, например R(12) = 4⁄11.
Можно показать, что коэффициент несократимости

R(d)= φ(d)/(d – 1), где φ – функция Эйлера.

Теперь определим коэффициент сократимости C(d):

C(d)= (d-φ(d))/(d – 1 )
Например, для простых чисел p

C(p)=1/(p-1)

Существует ровно 2 составных d<100, для которых C(d) является дробью с числителем, равным 1: это 15 и 85.
Найдите количество составных d, не превышающих 2×1011, для которых C(d) – дробь с числителем, равным единице.

Задачу решили: 5
всего попыток: 7
Задача опубликована: 01.12.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Тройку натуральных чисел (a,b,c) будем называть тройкой Кардано, если она удовлетворяет условию:

 

Например, тройка (2,1,5) является тройкой Кардано.
Найдите, сколько существует троек Кардано при a, b и  c меньших, чем 30 000 000.

Задачу решили: 2
всего попыток: 3
Задача опубликована: 26.12.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Округлим квадратный корень из натурального числа n до ближайшего целого и будем называть полученный результат округленным квадратным корнем.
Теперь рассмотрим следующий алгоритм вычисления округленного квадратного корня, фактически являющийся модификацией формулы Герона для целочисленной арифметики:
Пусть d — количество знаков числа n,
x0 = 2?10(d-1)⁄2 для нечетных d, и
x0 = 7?10(d-2)⁄2 для четных d.
Будем вычислять последовательность xk
xk+1=[(xk+{n/xk})/2]
до тех пор, пока последовательные значения не совпадут: xk+1 = xk. Скобки [] - означают округление вниз, а {} - округление вверх.
Для примера вычислим округленный квадратный корень из 4321. Это четырехзначное число, поэтому x0 = 7 ? 10(4-2)⁄2 = 70.
x1=[(70+{4321/70})/2]=66
x2=[(66+{4321/66})/2]=66
Поскольку  x2 = x1,  двух итераций  оказалось достаточно, и мы нашли округленный квадратный корень, равный 66 (это правильный результат, поскольку квадратный корень из 4321 примерно равен 65,7343137…)
Описанный метод оказался удивительно эффективным. Например, для вычисления округленных квадратных корней из пятизначных чисел требуется не более 5 итераций. Существует всего 82 пятизначных числа (например, число 10097), для которых алгоритм требует пяти шагов.
Найдите максимальное число итераций, которое может потребоваться для вычисления округленного квадратного корня из 14-значного числа. В качестве ответа укажите количество 14-значных чисел, для вычисления округленного квадратного корня из которых требуется найденное максимальное число шагов. 

Задачу решили: 3
всего попыток: 4
Задача опубликована: 04.06.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Даны n натуральных чисел  1 < a1  < a2 < ... < an. Будем рассматривать их линейные комбинации вида  q1a1 + q2a2 + ... + qnan = b, используя при этом только целые неотрицательные коэффициенты qk ≥ 0. Заметим, что таким образом можно получить далеко не всякое значение b. Например, при n=2, a1 = 5 и a2  = 7 правая часть b может принимать любые натуральные значения кроме двенадцати: 1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18 и 23. Обозначим количество таких недостижимых чисел через h(a1, a2, ..., an). Таким образом, h(5,7)=12.
Также можно проверить, что h(6, 10, 15)=15, и h(14, 22, 77) = 98.
Найдите сумму всех h(p*q,p*r,q*r), где p, q и r ? простые числа, и p < q < r < 5000.

Задачу решили: 0
всего попыток: 1
Задача опубликована: 02.07.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Функция Аккермана A(m,n) рекурсивно задается для неотрицательных целых чисел m и n следующим образом:

A(m, n) = \left\{ \begin{array}{rrrrr}
n+1, m=0 \\
A(m-1, 1), m>0, n=0 \\
A(m-1, A(m, n-1)), m>0, n>0
\end{array}

Например, A(1, 0) = 2, A(2, 2) = 7 и A(3, 4) = 125.

Чему равен остаток от деления \sum A(m,n) на 148, где 0 \le m,n \le 6?

 
Задачу решили: 14
всего попыток: 17
Задача опубликована: 26.11.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Для каждого натурального числа n определим f(n) как наименьшее натуральное число, кратное n, десятичная запись которого состоит из нулей, двоек и троек.

Например, f(1)=2, f(3)=3, f(4)=f(5)=f(10)=20, f(7)=203, f(9)=333, f(89)= 20203.

Можно подсчитать, что 

f(1)/1 + f(2)/2 + f(3)/3+ ... + f(100)/100 = 19443

Найдите f(1)/1 + f(2)/2 + f(3)/3+ ... + f(10000)/10000

Задачу решили: 7
всего попыток: 11
Задача опубликована: 03.12.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Как известно, последовательность Фибоначчи определяется рекуррентно:

f(0)=0 , f(1)=1, и f(n)=f(n-1)+f(n-2) при n>1.

Найдите Σf(pi), где pi – простые числа, и 1014< pi <1014+5*106.

Остаток от деления полученной суммы на 1234567891011 будет ответом к этой задаче.

Задачу решили: 3
всего попыток: 3
Задача опубликована: 14.01.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Как и в стандартной игре Ним, в игре Простой Ним участвуют два игрока, которые по очереди берут камни из трех куч. Каждым ходом игрок может взять из одной кучи некоторое количество камней, если это количество выражается простым числом.

Проигрывает тот, кто не может сделать очередной ход.

Позиция в Простом Ниме характеризуется тройкой неотрицательных целых чисел (a,b,c).

Как обычно, выигрышной позицией считается такая позиция, что при правильной стратегии очередной игрок может обеспечить себе победу. Остальные позиции называются проигрышными.

Можно подсчитать, что при 0≤a≤b≤c≤29 существует 651 проигрышная позиция.

Найдите, сколько существует проигрышных позиций при 0≤a≤b≤c≤20000.

Задачу решили: 6
всего попыток: 14
Задача опубликована: 04.03.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Рассмотрим вещественное число √2+√3 и рассчитаем его четные степени:

(√2+√3)2 = 9.898979485566356...

(√2+√3)4 = 97.98979485566356...

(√2+√3)6 = 969.998969071069263...

(√2+√3)8 = 9601.99989585502907...

(√2+√3)10 = 95049.999989479221...

(√2+√3)12 = 940897.9999989371855...

(√2+√3)14 = 9313929.99999989263...

(√2+√3)16 = 92198401.99999998915...

Интересно, что количество девяток в дробной части полученных значений не убывает, и можно доказать, что сама дробная часть при больших n стремится к 1.

В этой задаче мы рассматриваем только вещественные числа, которые можно представить в виде √p+√q , где p и q – натуральные числа, p<q, а дробная часть выражения (√p+√q)2n стремится к 1 при больших n.

Пусть C(p,q,n) — количество девяток после запятой в числе (√p+√q)2n, а N(p,q) — минимальное значение n, при котором C(p,q,n)≥2013.

Найдите количество чисел вида √p+√q, где 1≤p<q≤2013, для которых N(p,q)>2013.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.