Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
8
всего попыток:
14
В каждой ячейке квадрата размера 5 на 5 записана цифра. Квадрат будем считать простым, если каждая строка (слева направо), каждый столбец (сверху вниз) и обе диагонали (слева направо) являются простыми пятизначными числами. Сколько существует различных симметричных простых квадратов (т.е. таких, в которых первая строка равна первому столбцу, вторая строка - второму столбцу, и так далее, все 5)?
Задачу решили:
51
всего попыток:
81
Была исходная последовательность символов: В конец этой последовательности дописали ее копию, но развернутую зеркально (символы взяли в обратном порядке). Получилась строка: Эту операцию повторили еще три раза, каждый раз дописывая в зеркальном отображении всю последовательность, полученную на предыдущем шаге. В результате получилась последовательность из 128 символов. В получившейся последовательности заменили все тройки идущих подряд символов BAB на ABA. Эту операцию повторяли до тех пор, пока тройки идущих подряд символов BAB не перестали встречаться в последовательности. Сколько букв B осталось в результирующей последовательности?
Задачу решили:
6
всего попыток:
22
Электрическая цепь состоит из одинаковых конденсаторов емкостью C. Конденсаторы можно соединять последовательно или параллельно в блоки, которые также можно соединять последовательно или параллельно в "суперблоки" большего размера, и так далее.
Задачу решили:
3
всего попыток:
12
На складах 'A' и 'B' хранятся деликатесы в следующих количествах:
Обратите внимание на то, что количество каждого продукта измеряется упаковками, т.е. целым числом. <page-break/> Хотя хозяин всячески старается хранить деликатесы наилучшим образом, они иногда все-таки портятся.
Задачу решили:
8
всего попыток:
16
Дроби, у которых числитель меньше знаменателя, называют правильными. Для каждого знаменателя d существует d-1 правильная дробь. Например, для d=15 это 1/15 , 2/15 , 3/15 , 4/15 , 5/15 , 6/15 , 7/15 , 8/15 , 9/15 , 10/15, 11/15, 12/15, 13/15, 14/15. Из 14 правильных дробей со знаменателем 15 лишь 8 оказываются несократимыми. Назовем коэффициентом несократимости R(d) знаменателя d отношение количества несократимых правильных дробей со знаменателем d к общему количеству правильных дробей со знаменателем d. Например, R(15)= 8/14 =4/7. Заметим, что d=15 – это наименьший нечетный знаменатель, для которого R(d)<2/3. Найдите наименьший нечетный знаменатель d, для которого R(d)< 19945/60961.
Задачу решили:
3
всего попыток:
5
Назовем коэффициентом несократимости знаменателя d отношение количества несократимых правильных дробей со знаменателем d к общему количеству правильных дробей со знаменателем d, например R(12) = 4⁄11. R(d)= φ(d)/(d – 1), где φ – функция Эйлера. Теперь определим коэффициент сократимости C(d): C(d)= (d-φ(d))/(d – 1 ) C(p)=1/(p-1) Существует ровно 2 составных d<100, для которых C(d) является дробью с числителем, равным 1: это 15 и 85.
Задачу решили:
5
всего попыток:
7
Тройку натуральных чисел (a,b,c) будем называть тройкой Кардано, если она удовлетворяет условию:
Например, тройка (2,1,5) является тройкой Кардано.
Задачу решили:
2
всего попыток:
3
Округлим квадратный корень из натурального числа n до ближайшего целого и будем называть полученный результат округленным квадратным корнем.
Задачу решили:
3
всего попыток:
4
Даны n натуральных чисел 1 < a1 < a2 < ... < an. Будем рассматривать их линейные комбинации вида q1a1 + q2a2 + ... + qnan = b, используя при этом только целые неотрицательные коэффициенты qk ≥ 0. Заметим, что таким образом можно получить далеко не всякое значение b. Например, при n=2, a1 = 5 и a2 = 7 правая часть b может принимать любые натуральные значения кроме двенадцати: 1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18 и 23. Обозначим количество таких недостижимых чисел через h(a1, a2, ..., an). Таким образом, h(5,7)=12.
Задачу решили:
0
всего попыток:
1
Функция Аккермана рекурсивно задается для неотрицательных целых чисел и следующим образом: Например, , и . Чему равен остаток от деления на 148, где ?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|