Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
34
всего попыток:
63
Первые 10 миллионов простых чисел записаны последовательно в ряд. Какое количество нулей находится на четных местах?
Задачу решили:
11
всего попыток:
33
В каждой ячейке квадрата размера 5 на 5 записана цифра. Квадрат будем считать простым, если каждая строка (слева направо), каждый столбец (сверху вниз) и обе диагонали (слева направо) являются простыми пятизначными числами. В левом верхнем углу находится цифра 3, а сумма цифр каждого простого числа равна 23. Сколько таких различных простых квадратов существует?
Задачу решили:
33
всего попыток:
48
Определим для натурального числа n функцию S(n) равной сумме цифр в его десятичной записи. Найдите наименьшее M, такое, что среди простых чисел меньших 1000000, количество чисел для которых S(n)=M максимально.
Задачу решили:
0
всего попыток:
0
Володя написал программу, которая складывает в столбик два числа. К сожалению, он не разобрался, как правильно переносить единицу из одного разряда в следующий. Поэтому программа стала выполняться следующим образом. Сначала она складывает последние цифры обоих чисел и записывает результат, как в случае, если он однозначный, так и в случае, если он двузначный. Затем программа складывает предпоследние цифры обоих чисел и результат сложения приписывает слева к результату предыдущего сложения. Далее процесс повторяется для всех разрядов. Если в одном числе цифр меньше, чем в другом, то программа размещает нули в соответствующих разрядах более короткого числа.
Задачу решили:
59
всего попыток:
88
Число X = (3232 + 44 -1) * 1616 + 88 -1 перевели из десятичной в двоичную систему счисления. Сколько единиц получилось в двоичной записи числа?
Задачу решили:
21
всего попыток:
48
Индийский математик Д. Р. Капрекар известен своими работами по теории чисел. Одна из его работ посвящена так называемому преобразованию Капрекара. Рассмотрим следующую операцию. Пусть задано число x. Пусть M - наибольшее число, которое можно получить из x перестановкой его цифр, а m - наименьшее число (это число может содержать ведущие нули). Обозначим как K(x) разность M - m, дополненную при необходимости ведущими нулями так, чтобы число цифр в ней было равно числу цифр в x.
Задачу решили:
4
всего попыток:
6
Рассмотрим строку, состоящую из последовательных первых 109 знаков числа π после запятой. Найти минимальное число не входящее в качестве подстроки в эту строку.
Задачу решили:
0
всего попыток:
1
Найти наименьшее натуральное число x такое, что существует целое y>x и (x+i)/(y+j) являются сократимыми дробями для всех i,j = 0,1,2,...,9.
Задачу решили:
54
всего попыток:
91
Найти миниальное n такое, что: 1+1/2+1/3+1/4+...+1/n > 16.
Задачу решили:
26
всего попыток:
64
Сколько чисел начинается с цифры 1 среди чисел 2n, где n=0, 1,...,109?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|