Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
23
всего попыток:
79
Вы собираете теннисные мячи в корзины, сотоящие из трех отделений, при этом раскладываете их по следующим правилам: 1. во всех отделениях всех корзин разное (ненулевое) количество мячей; 2. во всех корзинах в сумме по отделениям одинаковое количество мячей; 3. количество мячей в корзинах минимально возможное для данного количества корзин. Например, если у вас 2 корзины, то в отделения первой корзины последовательно разещаем 1, 3 и 7 мячей, а в отделения второй - 2, 4 и 5 мячей. В результате в каждой корзине будет по 11 мячей, и это число минимально возможное. У вас 100 корзин, найти сумму мячей в одной корзине.
Задачу решили:
35
всего попыток:
65
Пусть f(n) для натурального числа n равно количеству различных представлений в виде сумм степеней 2, при этом каждая степень не может использоваться более двух раз. Например, f(10)=5 так как 10=1+1+8=1+1+4+4=1+1+2+2+4=2+4+4=2+8.
Задачу решили:
29
всего попыток:
51
Прямоугольная сетка 3 × 2 на рисунке содержит 18 прямоугольников:
Определим функцию f(a,b) как число прямоугольников, содержащихся в сетке a × b. Сколько различных значений принимает f(a,b) при 0<a<1000 и 0<b<1000?
Задачу решили:
12
всего попыток:
22
Если мы знаем только k членов последовательности, мы не можем однозначно описать следующий ее член с помощью многочленов.
Задачу решили:
6
всего попыток:
18
На рисунке представлен неориентированный граф, содержащий семь вершин и 12 ребер, суммарный вес которых составляет 243. Тот же граф можно представить следующей матрицей:
Однако, некоторые ребра можно "сэкономить", не нарушая связности графа. Граф, в котором достигается максимальная экономия, представлен ниже. Его вес - всего 93, а "экономия" по сравнению с исходным графом составляет 243-93 = 150.
Пусть задан граф, содержащий 40 вершин, занумерованных числами от 0 до 39. Вес ребра, соединяющего вершины i и j, выражается формулой Какой максимальной экономии можно добиться, удаляя лишние ребра без потери связности графа?
Задачу решили:
33
всего попыток:
57
Шахматный конь ходит буквой "Г" - сначала в одну сторону на 2 клетки, а потом влево или вправо на одну. Новая шахматная фигура баран ходит как и конь, только сначала он ходит на 3 клетки. Баран начал ходить с поля a1. Какое максимальное количество клеток он может посетить (включая первую) и при этом не наступая ни на одну из клеток дважды.
Задачу решили:
5
всего попыток:
22
Набор домино состоит из прямоугольных костяшек, каждая из которых разделена на две половинки линией, параллельной более короткой стороне. На каждой из половинок нарисованы точки, количество которых соответствует числу от 0 до 6 включительно. На костяшках полного набора домино обозначены все возможные различные пары чисел. Все костяшки выкладывают в "круговые" цепочки, соединяя пары костяшек короткими сторонами, если количества точек на соседних с местом соединения половинках костяшек равны, и при этом левая половинка начальной и правая половинка последней костяшки имеют одинаковое количество точек и поэтому цепочка "закругляется". Две цепочки будем считать различными, если нельзя получить одну из другой при помощи поворота или зеркального отображения. Сколько существует различных "круговых" цепочек состоящих из всех костяшек?
Задачу решили:
3
всего попыток:
3
Рассмотрим граф, составленный из блоков A и B, показанных на рисунке:
Блоки соединяются вдоль вертикальных ребер в различном порядке, например, вот так: Вершины графа будем раскрашивать, используя не более c цветов таким образом, чтобы связанные ребром вершины были окрашены в разные цвета. Теперь подсчитаем, сколько разноцветных графов можно составить, используя a блоков A, b блоков B и не более c цветов.
Задачу решили:
5
всего попыток:
43
В зале театра 40 нумерованных мест, а продано всего 18 билетов. Сколькими способами можно рассадить зрителей так, чтобы ровно 8 из них сидели на своих местах?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|