Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
7
всего попыток:
9
Трехзначное число 376 в десятичной системе счисления обладает одним интересным свойством: его квадрат заканчивается теми же цифрами 3, 7 и 6, 3762 = 141376.Будем называть натуральные числа, обладающие этим свойством, устойчивыми. Устойчивые числа есть и в других системах счисления. Например, в системе счисления по основанию 14 устойчивым является число c37. Действительно, c372 = aa0c37. Наибольшее 10-значное устойчивое число в 14-ичной системе счисления равно 7337aa0c37. В десятичной записи это число равно 149429406721. (В 14-ичной системе счисления буквами a, b, c и d мы обозначили цифры 10, 11, 12 и 13, подобно тому, как это делается в 16-ичной системе счисления.) Найдите наибольшее 10000-значное устойчивое число в 14-ичной системе счисления, переведите его в десятичную систему, а в качестве ответа укажите 8 младших десятичных цифр.
Задачу решили:
3
всего попыток:
8
Сколько существует 18-значных натуральных чисел n, таких, что сумма цифр n равна сумме цифр числа 137n?
Задачу решили:
6
всего попыток:
8
Назовем пифагоровым многоугольником выпуклый многоугольник, обладающий следующими свойствами:
Обозначим через Q(n) количество различных пифагоровых многоугольников, периметр которых равен n. При этом различными будем считать многоугольники, которые нельзя преобразовать друг в друга путем параллельного переноса. Тогда Q(4)=1, Q(30) =1242, Q(60) =248282. Найдите Q(120).
Задачу решили:
10
всего попыток:
12
Будем называть четное натуральное число N приемлемым, если все его различные простые делители являются последовательными простыми числами. В частности, все положительные степени 2 являются приемлемыми. Число N=630 приемлемо, поскольку оно четно, а его различные простые множители – 2,3,5,7 – это последовательные простые числа. Число N=660 неприемлемо, поскольку в последовательности его простых множителей – 2,3,5,11 – пропущено простое число 7. Если N – приемлемое число, то наименьшее число M>1, для которого N+M – простое число, будем называть псевдо-форчуновым числом приемлемого числа N. Найдите наименьшее приемлемое N, для которого псевдо-форчуново число равно 97.
Задачу решили:
4
всего попыток:
7
Для натурального числа k обозначим через d(k) сумму его десятичных цифр. Например, d(42) = 4+2 = 6. Обозначим через S(n) количество натуральных чисел k < 10n, таких что
Можно подсчитать, что S(9) = 5464, и S(20) = 36035277144875036. Найдите остаток от деления S(2012) на 109.
Задачу решили:
4
всего попыток:
5
Назовем натуральное число n мощным, если для его любого простого делителя p число n делится также на p2. Назовем натуральное число n точной степенью, если оно является степенью другого натурального числа. Назовем натуральное число n ахиллесовым, если оно мощное, но не является точной степенью. Например, числа 864 = 25•33 и 1800 = 23•32•52 — ахиллесовы. Назовем натуральное число S сильно ахиллесовым, если и S, и φ(S) — ахиллесовы. Здесь φ(S) означает функцию Эйлера. Например, число 864 — сильно ахиллесово число, поскольку φ(864) = 288 = 25•32, а число 1800 — ахиллесово, но не сильно ахиллесово, так как φ(1800) = 480 = 25•31•51. Существует 2 трехзначных и 5 четырехзначных сильно ахиллесовых чисел, а восьмизначных насчитывается 396. Найдите количество 18-значных сильно ахиллесовых чисел.
Задачу решили:
3
всего попыток:
8
Рассмотрим бесконечную строку S, состоящую из записанных подряд натуральных чисел в десятичной записи: S =1234567891011121314151617181920212223242... Ясно, что десятичная запись каждого натурального числа n встретится в строке S бесконечно много раз. Будем отмечать, где именно встретились такие вхождения. Например, число 12 первый раз встретится, начиная с позиции 1 строки S, а второй раз — с позиции 14, и так далее. Обозначим через f(n) номер позиции в строке S, с которого начинается n-ое вхождение числа n. Например, f(1)=1, f(5)=81, f(11)=235, а f(7780)=111111365. Найдите ∑f(11k), где 1≤k≤6.
Задачу решили:
7
всего попыток:
7
Горизонтальная полоска состоит из 2n + 1 клеток. Средняя клетка оставлена пустой, слева от нее в n клетках стоят красные фишки, а справа – синие. На рисунке показано расположение фишек для случая n = 3.
Фишки могут совершать ходы двух видов: шаги, когда фишка перемещается на соседнюю незанятую клетку, и скачки, когда одна фишка перепрыгивает через другую в следующую непосредственно за нею пустую клетку.
Обозначим через M(n) минимальное количество ходов, необходимое для того, чтобы поменять местами синие и красные фишки, так, чтобы красные фишки оказались справа от центра, а синие – слева. Легко проверить, что M(3) = 15, а 15 является треугольным числом. Построим последовательность таких n, для которых M(n) является треугольным числом. В этой последовательности ровно пять чисел, не превышающих 100, а именно 1, 3, 10, 22 и 63. Их сумма равна 99. Найдите сумму всех n, не превышающих 1017, для которых M(n) является треугольным числом.
Задачу решили:
2
всего попыток:
2
Несколько комнат последовательно соединены автоматическими дверями, как показано на рисунке.
Двери открывают с помощью карт доступа. При этом каждую карту можно использовать лишь однажды: когда вы проходите в комнату, двери за вами автоматически закрываются, а карта не возвращается. Аппарат в начале маршрута может выдать вам в любое время любое количество карт без ограничений, однако система слежения не позволяет иметь на руках более трех карт одновременно. При нарушении этого правила срабатывает сигнал тревоги, а все двери запираются навсегда. Поэтому если вы возьмете при входе три карты и пойдете прямо к выходу, то в комнате №3 у вас карт не останется, и вы окажетесь в ней заперты с обеих сторон. К счастью, в каждой комнате есть сейф, куда можно складывать карты в любом количестве. Пользуясь этими сейфами, вы сможете достичь выхода. Например, вы можете войти в комнату № 1, использовав одну карту, положить вторую карту в сейф, а с помощью третьей карты вернуться к началу маршрута. Получив там в аппарате еще три карты, вы используете одну, чтобы войти в комнату №1 и взять там из сейфа оставленную карту. Теперь у вас в руках снова будет три карты, и этого достаточно, чтобы открыть три оставшиеся до выхода двери. Итак, вы можете пройти анфиладу из трех комнат, использовав всего 6 карт. 6 комнат можно пройти, используя 123 карты и не имея на руках более 3 карт одновременно. Пусть C - максимальное количество карт, которые можно иметь при себе. Пусть R - количество комнат, через которые нужно пройти от входа (“Start”) до выхода (“Finish”). Обозначим через M(C,R) минимальное количество карт, необходимых для прохода через R комнат, имея при себе не более C карт в каждый момент времени. Например, M(3,6)=123 и M(3,7)=366. Поэтому ΣM(3,R)=489 при 6≤R≤7. Можно подсчитать, что ΣM(5,R)=2841 при 1≤R≤15. Найдите ΣM(5,R) при 1≤R≤60.
Задачу решили:
3
всего попыток:
5
Последовательность Голомба {G(n)} определяют как единственную неубывающую последовательность натуральных чисел, содержащую ровно G(n) вхождений каждого натурального числа n.
Можно подсчитать, что G(210) = 87, G(220) = 6320, и что ΣG(2n) = 857297 при 1 ≤ n < 30. Найдите ΣG(2n)для 1 ≤ n < 60.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|