img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 90
всего попыток: 208
Задача опубликована: 05.04.09 20:50
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Составьте число из идущих подряд простых чисел: 23571113171923... Найти сумму цифр находящихся на местах 11, 101, 1001, 10001, 100001, 1000001, 10000001, 100000001.

Это открытая задача (*?*)
Задача опубликована: 11.05.09 13:21
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 200
Лучшее решение: Anton_Lunyov

В матрице размера 10x10 в каждой строке стоят целые числа от 0 до 9, при этом числа в строках не повторяются. Найти наибольший определитель такой матрицы.

Задачу решили: 18
всего попыток: 44
Задача опубликована: 22.07.09 23:07
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100

Строка состоит из 33 символов A и B. При этом в каждой подстроке, длина которой больше 9, количество символов A как минимум на 3 больше количества символов B. Сколько таких строк существует?

Задачу решили: 10
всего попыток: 19
Задача опубликована: 21.09.09 08:28
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100

Запишем 1000 чисел подряд:

1 2 3 4 5 ... 999 1000

Между числами можно поставить либо "+" (плюс), либо "-" (минус). При некоторых комбинациях в результате вычисления может получиться ноль. Какое количество таких комбинаций существует?

Задачу решили: 28
всего попыток: 56
Задача опубликована: 05.11.09 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

Матрицу {aij} 10 на 10 заполнили двузначными числами следующим образом: a11=31, a12=41, a13=59,... В качестве значений элементов матрицы выбираются две очередные цифры десятичной записи числа π=3,1415926... Сначала заполняется первая строка, затем вторая и т.д. Найдите определитель такой матрицы.

Задачу решили: 20
всего попыток: 40
Задача опубликована: 15.02.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sveark (Янус Невструев)

Два студента механико-математического факультета развлекаются такой игрой: они записывают в ячейки матрицы 3х3 числа от 1 до 9, первый студент записывает в центральную (второй столбец и вторая строка) ячейку число x, затем второй может в любую ячейку записать второе число отличное от первого, затем первый студент может записать в любую оставшуюся ячейку новое число несовпадающее с предыдущими и так далее, пока все ячейки не будут заполнены различными числами от 1 до 9. Побеждает первый игрок, если определитель получившейся матрицы положителен, в противном случае побеждает второй игрок. При каком минимальном числе x вероятность победы первого игрока максимальна.

(Идею этой задачи подсказал замечательный математик, профессор МГУ им. М.В. Ломоносова - А.В. Михалев. В пору его обучения так развлекались студенты. Хорошие были времена и хорошие игры :-))
Задачу решили: 54
всего попыток: 91
Задача опубликована: 30.08.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: bbny

Найти миниальное n такое, что: 1+1/2+1/3+1/4+...+1/n > 16

Задачу решили: 11
всего попыток: 17
Задача опубликована: 10.02.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: levvol

Пусть (x1, x2, ... , xm) – такой набор положительных вещественных чисел, для которого выполняется условие x12 + x22 + ... + xm2 = m, а произведение Pm = x1 * x22 * ... * xmm принимает максимальное значение. Можно проверить, что [P10] = 64 (здесь скобки [ ] означают целую часть числа).
А чему равно [P25]?

Задачу решили: 3
всего попыток: 9
Задача опубликована: 18.02.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Возьмем вещественное число x.
Наилучшим его приближением со знаменателем, не превышающим d, назовем несократимую дробь r/s (s≤d), такую, что у любого рационального числа, лежащего ближе к x, чем r/s, знаменатель будет больше, чем d:
|p/q-x| < |r/s-x| => q>d.
Например, наилучшим приближением числа √13 со знаменателем, не превышающим 20, будет дробь 18/5. А наилучшим приближением того же числа, но со знаменателем, не превышающим 30, будет 101/28.
Найдите сумму знаменателей наилучших приближений √n со знаменателем, не большим, чем 1012, для всех простых чисел n, не превышающих 100000.

Задачу решили: 10
всего попыток: 17
Задача опубликована: 21.02.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Натуральное число называется свободным от квадратов, если оно не делится ни на один квадрат простого числа. Например, числа 1, 2, 3, 5, 6, 7, 10, 11 свободны от квадратов, а числа 4, 8, 9, 12 - нет.
Сколько свободных от квадратов чисел не превышает 330?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.