img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 12
всего попыток: 33
Задача опубликована: 22.03.10 08:00
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Рассмотрим равнобедренный треугольник с основанием b = 16 и боковыми сторонами L = 17.

Применяя теорему Пифагора, видим, что высота треугольника
h = √(172 - 82) = 15, что на единицу меньше основания.
Для b = 272 и L = 305 мы имеем h = 273, что на единицу больше основания, и это второй по величине равнобедренный треугольник со свойством h = b ± 1.

Найдите сумму периметров десяти наименьших равнобедренных треугольников, для которых h = b ± 1 и b, L натуральные числа.

Задачу решили: 11
всего попыток: 16
Задача опубликована: 29.03.10 08:00
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

Пусть (a, b, c) - тройка сторон прямоугольного треугольника и c гипотенуза. Причем a, b и с - натуральные. Возможно сложить четыре таких треугольника вместе, чтобы составить квадрат с квадратным отверстием.

Например, 4 треугольника со сторонами (3, 4, 5) могут быть сложены вместе чтобы составить квадрат 5 на 5 с отверстием 1 на 1 посредине. При этом квадрат 5 на 5 можно замостить 25 квадратами 1 на 1 (такими как отверстие).

А для треугольника (5, 12, 13) отверстие будет 7 на 7, но квадратами 7 на 7 невозможно покрыть квадрат 13 на 13.

Какова сумма периметров прямоугольных треугольников (a, b, c), таких что a < b, длины сторон взаимнопросты (НОД(a, b, c) = 1) и для которых можно квадрат со стороной c покрыть квадратами равными образующемуся отверстию, среди прямоугольных треугольников с периметрами меньшими 100000000?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.