Лента событий:
tubaki решил задачу "Пять дробей" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
250
всего попыток:
616
В комнате находятся десять человек; некоторые из них (по меньшей мере один) всегда говорят правду, а остальные всегда лгут. На каждом надета чёрная или белая шапка. И каждый уверяет, что среди остальных девяти ровно трое носят черные шапки. Сколько лжецов может быть в комнате? В ответе укажите произведение всех возможных вариантов.
Задачу решили:
113
всего попыток:
404
Найти наименьшее целое число, большее единицы и которое нельзя получить из неё при помощи нескольких последовательных увеличений на целое число процентов от 1 до 100 (причём после каждого увеличения должно получаться также целое число).
Задачу решили:
339
всего попыток:
593
За столом сидят девочки и мальчики, а на блюде перед ними — 31 булочка. Не все ребята знакомы. Сначала каждая девочка берёт с блюда и раздаёт по булочке каждому незнакомому мальчику, затем каждый мальчик берёт с блюда и раздаёт по булочке каждой знакомой девочке, и на блюде остаётся только 1 булочка. Девочек — 6. А сколько мальчиков?
(Задача моего школьного учителя математики.)
Задачу решили:
131
всего попыток:
206
Все натуральные числа от 1000 до 2000 записаны подряд: 100010011002...19992000. Сколько раз в этом ряду после нечётной цифры идёт чётная?
Задачу решили:
111
всего попыток:
499
На блюде лежат 30 конфет различных сортов. Можно выбрать несколько сортов и съесть одно и то же количество конфет каждого выбранного сорта. Какое максимальное число конфет Вам гарантированно удастся съесть? (Независимо от того, сколько конфет и каких сортов лежит на блюде.)
Задачу решили:
632
всего попыток:
761
Летели галки. Сели на палки. Сели по галке на палке — галка лишняя... Сели по две галки на палке — палка лишняя... Сколько было галок и палок? В ответе введите произведение двух полученных чисел.
Задачу решили:
196
всего попыток:
292
На доске выписаны два числа 22009 и 52009 (в десятичной записи). Сколько всего цифр на доске?
Задачу решили:
73
всего попыток:
215
Сумма n нечётных чисел совпадает с их произведением. Какие значения может принимать n? В ответе введите число возможных значений n, удовлетворяющих неравенству 1 ≤ n ≤ 2009.
Задачу решили:
79
всего попыток:
206
На доске выписаны в ряд нули и единицы (встречаются и те, и другие). Любые две цифры, между которыми написано 10 или 15 цифр, совпадают. Каково максимально возможное число цифр на доске?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|