Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
411
всего попыток:
556
Некто плыл на вёсельной лодке против течения. Под мостом его шляпа упала в воду. Через 15 минут гребец заметил пропажу и, не теряя времени, развернулся и поплыл вдогонку за шляпой, гребя в том же темпе. Он подобрал свою шляпу в 1 км ниже моста. Сколько км/ч составляет скорость течения реки?
Задачу решили:
170
всего попыток:
568
Двенадцать солдат должны как можно быстрее вернуться в свою часть, находящуюся от них в 17 км по просёлочной дороге. Друг одного из солдат берётся подвезти их на своём джипе, но одновременно он может взять лишь четверых. Скорость идущих пешком солдат — 5 км/ч, а джипа — 60 км/ч (дорога, увы, неважная). Через сколько минут все солдаты смогут вернуться в часть при наилучшей организации своего движения? Временем, затраченным на пересадки, можно пренебречь.
Задачу решили:
209
всего попыток:
540
Сколько различных решений имеет уравнение log1/16x=(1/16)x?
Задачу решили:
160
всего попыток:
618
Сначала первая труба наполняла бассейн ровно половину времени, необходимого двум другим трубам, чтобы полностью его наполнить. Потом вторая труба наполняла бассейн ровно половину времени, необходимого двум другим трубам, чтобы полностью его наполнить. Наконец, третья труба наполняла бассейн ровно половину времени, необходимого двум другим трубам, чтобы полностью его наполнить. В результате бассейн оказался наполненным за 2 часа. За сколько минут все три трубы наполняют бассейн, если работают одновременно?
Задачу решили:
208
всего попыток:
246
Найдите все простые p и q, для которых выполняется равенство p+q=(p−q)3. В ответе укажите сумму всех таких p и q.
Задачу решили:
198
всего попыток:
269
Стороны треугольника — последовательные целые числа. Найдите эти стороны, если известно, что одна из его биссектрис перпендикулярна одной из его медиан. В ответе укажите сумму сторон треугольника.
Задачу решили:
151
всего попыток:
274
Найдите наименьшее натуральное значение x, удовлетворяющее уравнению [10n/x]=2009 при некотором натуральном значении n. ([y] — это целая часть y, т.е. наибольшее целое число, не превосходящее y.)
Задачу решили:
194
всего попыток:
292
Найдите сумму всех различных натуральных значений n, при которых сумма 1!+2!+3!+...+n! является квадратом целого числа. (Как обычно, n!=1·2·3·...·n.)
Задачу решили:
202
всего попыток:
345
Сколько различных решений имеет уравнение: 24x6−4x5−78x4+29x3+56x2−42x+8=0?
Задачу решили:
94
всего попыток:
453
Сколько существует таких положений часовых стрелок, что замена часовой на минутную и наоборот дает новое положение, тоже возможное на правильных часах?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|