Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
74
всего попыток:
262
Сколько положительных действительных решений имеет каждое из следующих уравнений: Напишите оба числа подряд, без пробелов. Порядок "многоэтажного" возведения в степень — сверху вниз. Формально в левой части каждого из уравнений написан предел:
Задачу решили:
122
всего попыток:
178
Вычислите
Задачу решили:
79
всего попыток:
205
Найдите предел 13-ой производной функции .
Задачу решили:
65
всего попыток:
99
Сколько существует различных троек простых чисел таких, что произведение любых двух из них при делении на третье даёт в остатке 1? (Тройки, полученные друг из друга перестановками, считаются одинаковыми.)
Задачу решили:
122
всего попыток:
240
Сколько решений имеет уравнение x2−8[x]+7=0, где [x] —целая часть числа x?
Задачу решили:
84
всего попыток:
133
Найдите геометрическую прогрессию максимальной длины, все члены которой — различные целые числа из промежутка от 100 до 1000 включительно. В ответе укажите наибольший член этой прогрессии.
Задачу решили:
112
всего попыток:
150
Найдите остаток от деления числа (2010!)2011 на 2011 (n! означает произведение всех натуральных чисел от 1 до n).
Задачу решили:
66
всего попыток:
434
Участников математической олимпиады пересчитали и спросили, кто поедет в воскресенье на экскурсию. Каждый участник сделал следующее заявление: "Я поеду, если всего поедет не менее n2/N и не более n участников олимпиады, где n — мой номер, а N — общее число участников олимпиады". Какое наибольшее число участников смогут поехать на экскурсию, если N=125?
Задачу решили:
72
всего попыток:
130
Угол между часовой и минутной стрелками — один градус. Секундная стрелка — ровно на 12. Который час? В ответе введите без пробела часы (от 0 до 11) и минуты (от 00 до 59). Если задача имеет более одного решения, введите их в порядке возрастания. (Например, если ответ "0:15 и 11:01", введите 0151101; а вместо 14:25 введите 2:25.)
Задачу решили:
49
всего попыток:
85
Найти минимальное натуральное число n>2010, удовлетворяющее условию: в любом множестве из n целых чисел существует подмножество из 2010 чисел, сумма которых делится на 2010.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|