![]()
Лента событий:
Lec решил задачу "Расстояние между точками" (Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
19
всего попыток:
25
Найти отношение площади египетского треугольника к площади треугольника с медианами 3, 4, 5. ![]()
Задачу решили:
10
всего попыток:
12
Неперпендикулярные прямые u и v пересекаются в точке M0. Отличная от неё точка M1 находится на прямой u. Рассмотрим последовательность отрезков одинаковой длины M0M1, M1M2, M2M3, M3M4, ... и т.д., где местоположения точек M2, M3, M4, и т.д. определим на прямых v и u поочерёдно следующим образом. • Из нечётной точкм M2k-1 на прямой u опустим перпендикуляр M2k-1P2k-1 на прямую v. Определим точку M2k на прямой v таким образом, что точка P2k-1 будет серединой отрезка M2k-2M2k. • Из чётной точкм M2k на прямой v опустим перпендикуляр M2kP2k на прямую u. Определим точку M2k+1 на прямой u таким образом, что точка P2k будет серединой отрезка M2k-1M2k+1. Пусть острый угол между прямыми u и v равен α. Определим функцию f(α) как наименьшее натуральное число n, такое, что точка Mn совпадёт с точкой M0. Если такое число не существует, определим f(α)=-1. Найдите f(32°)+f(33°). Замечание. Местоположения некоторых точек могут совпадать. ![]()
Задачу решили:
18
всего попыток:
20
Внутри треугольника АВС расположена точка М пересечения биссектрисы из вершины С и перпендикуляра к ней из вершины В. Найти отношение суммы площадей треугольников АМВ и ВМС к площади треугольника АВС. ![]()
Задачу решили:
22
всего попыток:
26
Высота и биссектриса на гипотенузу треугольника равны 3 и 4 соответственно. Найти площадь этого треугольника. ![]()
Задачу решили:
19
всего попыток:
22
Из вершины В квадрата ABCD на середину стороны CD провели отрезок ВМ. Из вершины А провели перпендикуляр АК на отрезок ВМ. Далее соединили отрезком точки K и D. Найти отношение площади треугольника AKD к площади квадрата. ![]()
Задачу решили:
14
всего попыток:
25
Даны два отрезка a и b. C помощью циркуля и односторонней линейки с наименьшим числом операций построить отрезок √(a^2+a*b+b^2). Сколько наименьшее число раз нужно приложить линейку для выполнения этой задачи. ![]()
Задачу решили:
20
всего попыток:
27
В квадрате ABCD построена во внутрь полуокружность с диаметром CD. Из вершины В проведен отрезок ВМ на сторону AD, который касается полуокружности в точке К. Найти отношение площади треугольника АКМ к площади квадрата ABCD. ![]()
Задачу решили:
20
всего попыток:
22
В параллелограмме ABCD с диагоналями АС и BD углы CAD=15°, BDA=30°. Найти угол BAC в градусах. ![]()
Задачу решили:
19
всего попыток:
23
Прямоугольный треугольник лежит в полукруге так, что гипотенуза лежит на диаметре, вершина прямого угла на окружности. Из точки касания вписанной окружности в треугольниик с гипотенузой проведен перпендикуляр до пересечения с окружностью длиной 8. Найти площадь трееугольниика. ![]()
Задачу решили:
17
всего попыток:
23
Основания биссектрис египетского треугольника являются вершинами внутреннего треугольника. Найти отношение площадей этих треугольников (меньшего к большему).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|