img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 4
+ЗАДАЧА 235. 10 из 2009 (Г.А.Гальперин)
  
Задачу решили: 55
всего попыток: 74
Задача опубликована: 06.10.09 14:03
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: Loks

Существуют ли 2009 последовательных натуральных чисел, среди которых ровно 10 простых?

Задачу решили: 127
всего попыток: 150
Задача опубликована: 08.10.09 12:44
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Vkorsukov

На столе лежат 30 одинаковых карточек, у каждой из которых одна сторона чёрная, а другая — красная. Все карточки лежат чёрной стороной вверх. Вам завязывают глаза и переворачивают любые 10 карточек. Задание: не снимая повязки, разделить карточки на две кучки так, чтобы в каждой из них было одно и то же число карточек, лежащих красной стороной вверх. (На ощупь стороны карточек абсолютно одинаковы. Рвать или резать карточки нельзя.)

Задачу решили: 98
всего попыток: 138
Задача опубликована: 10.10.09 19:15
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

На n карточках написаны все числа от 1 до n (на каждой карточке — одно число). Карточки разложили на две стопки так, что сумма номеров любых двух карточек, лежащих в одной стопке, не является квадратом целого числа. Найти наибольшее значение n.

Задачу решили: 210
всего попыток: 247
Задача опубликована: 15.10.09 19:35
Прислал: Tolik img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: fedyakov

У Вас имеются два бикфордовых шнура, которые горят неравномерно. Известно лишь, что каждый из шнуров сгорает ровно за одну минуту. (Например, одна половина шнура может сгореть за 23 секунд, а вторая — за 37.) Можно ли с их помощью отмерить 45 секунд, и если да, то как?

Задачу решили: 127
всего попыток: 200
Задача опубликована: 16.10.09 17:06
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

От пристани А вниз по течению реки отправились одновременно катер и плот. Доплыв до пристани Б, катер немедленно повернул обратно и встретил плот ровно через 3 часа после отплытия от А. Доплыв до А, катер снова повернул и догнал плот ещё через 2 часа после первой встречи с ним. Через сколько минут после второй встречи с плотом катер причалит к Б?

Задачу решили: 155
всего попыток: 364
Задача опубликована: 21.10.09 22:00
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

Найти максимальное семизначное число, которое состоит из трёх натуральных чисел, образующих арифметическую прогрессию и написанных друг за другом без пробелов в том же порядке, как и в прогрессии. (Пример такого числа: 8090100. Естественно, имеются в виду не числа, а их десятичные записи.)

Задачу решили: 195
всего попыток: 296
Задача опубликована: 25.10.09 15:17
Прислала: kuzia1616 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: bbny

После того, как учительница Марьиванна пересадила Вовочку с первого ряда на второй, Ванечку – со второго ряда на третий, а Машеньку – с третьего ряда на первый, средний возраст учеников, сидящих в первом ряду, увеличился на неделю, сидящих во втором ряду – увеличился на две недели, а сидящих в третьем ряду – уменьшился на четыре недели. Известно, что на первом и на втором рядах сидят по 12 человек. Сколько человек сидит в третьем ряду?

Задачу решили: 207
всего попыток: 370
Задача опубликована: 26.10.09 10:00
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: pete

Отец с хитрой улыбкой спрашивает своего сына: "Какое число самое большое?" Получив ответ, он лишь удивлённо качает головой — возразить нечего! Что ответил сын? 

Задачу решили: 161
всего попыток: 280
Задача опубликована: 28.10.09 19:31
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

На ста карточках написаны различные целые числа от 1 до 100 (по одному числу на каждой карточке). Какое минимальное число карточек нужно наудачу взять, чтобы среди них обязательно нашлись три карточки, сумма чисел на которых делится на три? 

Задачу решили: 80
всего попыток: 150
Задача опубликована: 01.11.09 10:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: min

Пусть b(1)<b(2)<b(3)<... — такая строго возрастающая последовательность целых положительных чисел, что b(b(n))=3n для любого n. Найдите b(2009).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.