img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Marutand добавил комментарий к решению задачи "Две чевианы в треугольнике" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 36
всего попыток: 54
Задача опубликована: 20.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Стороны треугольника a > b > c являются целыми числами и удовлетворяют условию f(3a/10000)=f(3b/10000)=f(3c/10000), где f(x)=x-[x] ([x] - целая часть x). Найти минимум периметра такого треугольника.

Задачу решили: 35
всего попыток: 58
Задача опубликована: 12.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

Найти сумму всех натуральных чисел a таких, что существует натуральное число b и верно:

a+b2+(НОД(a,b))3=a·b·НОД(a,b)

Задачу решили: 33
всего попыток: 66
Задача опубликована: 26.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В правильном выпуклом 12-угольнике ABCDEFGHIJKL со стороной 1 провели отрезки AF, BG и CH, которые при пересечении образовали треугольник.

Найдите его площадь. Ответ укажите с точностью до 5-го знака после запятой.

Задачу решили: 57
всего попыток: 96
Задача опубликована: 08.10.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Найти количество упорядоченных троек натуральных чисел a < b < c таких, что a1/2 + b1/2 + c1/2 = 20001/2.

Задачу решили: 38
всего попыток: 59
Задача опубликована: 28.11.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Пусть a > b > c - целые длины сторон треугольника такие, что 
{3a/104}={3b/104}={3c/104}, Найти минимальный периметр такого треугольника.
{x} - дробная часть числа, равна x-[x], где [x] - целая часть числа. 

Задачу решили: 59
всего попыток: 82
Задача опубликована: 12.01.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Найти две последние цифры значения выражения 21-22+23-24+25-26+...+22013.

Задачу решили: 49
всего попыток: 60
Задача опубликована: 18.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Пусть x, y, z ≥ 0 и x+y+z=1. Найдите максимум x(x+y)2(y+z)3(z+x)4.

Задачу решили: 47
всего попыток: 67
Задача опубликована: 22.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Чтобы стать настоящим нагонским рыбаком, каждый кандидат должен:

- поймать одну рыбу в первый день;

- поймать 4 рыбы и 5 крабов во второй день;

- поймать 25 рыб и 20 крабов в третий день;

- поймать 90 рыб и 99 крабов в четвертый день;

- поймать 329 рыб и 400 крабов в пятый день;

...

и так далее в соответствии с таинственным нагонским законом.

В итоге за первые 11 дней кандидат должен поймать общее количество морской живности, которое выражается формулой: a*3b+1 (a и b - целые числа; a≠3n для всех натуральных n).

Найдите a+b.

Задачу решили: 58
всего попыток: 83
Задача опубликована: 11.05.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Найти квадрат площади треугольника с высотами равными 3, 4 и 5.

Задачу решили: 35
всего попыток: 72
Задача опубликована: 27.05.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: kvanted

Рассмотрим все функция f такие, что
f(x+2)+f(x)+f(x-2)=f(x+1)+f(x-1).

Найти наименьшее положительное число, являющееся периодом для всех f,

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.