img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Marutand добавил комментарий к решению задачи "Две чевианы в треугольнике" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 41
всего попыток: 44
Задача опубликована: 28.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В остроугольном треугольнике ABC точки A2, B2 и C2 - являются серединами высот AA1, BB1 и CC1. Найдите сумму углов B2A1C2, C2B1A2 и A2C1B2 в градусах.

+ 0
+ЗАДАЧА 1437. 5 часов (О. Подлипский)
  
Задачу решили: 32
всего попыток: 36
Задача опубликована: 02.11.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

У вас имеется 5 часов со стрелками. Вы можете любые несколько из них перевести вперед. Для каждых часов время, на которое при этом их перевели, назовем временем перевода. Требуется все часы установить так, чтобы они показывали одинаковое время. За какое наименьшее суммарное количество часов перевода это можно гарантированно сделать?

+ 1
  
Задачу решили: 34
всего попыток: 35
Задача опубликована: 28.11.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найти сумму цифр натурального числа 3N, если известно, что сумма цифр в десятичной записи N равна 100, а сумма цифр числа 44n равна 800.

Задачу решили: 32
всего попыток: 34
Задача опубликована: 30.11.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Bulat (Миха Булатович)

Для конечного множества чисел известно, что среди любых трех чисел имеются два, сумма которых принадлежит этому множеству. Найти наибольшее число элементов в множестве.

Задачу решили: 43
всего попыток: 50
Задача опубликована: 09.01.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найдите количество троек натуральных чисел x, y, z таких, что (x+1)y+1+1=(x+2)z+1.

Задачу решили: 46
всего попыток: 54
Задача опубликована: 23.01.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Последовательность (an) задана следующим правилом:

a1=1,
для n>1 an=an-1-n, если an-1> n  и an=an-1+n, если an-1≤n

Найти минимальное n>1, когда an=1.

Задачу решили: 25
всего попыток: 26
Задача опубликована: 17.02.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Marutand

Равнобедренный треугольник имеет угол напротив основания 20 градусов и длины сторон 1. Доказать без использования тригонометрии, что длина основания больше 1/3. 

Задачу решили: 26
всего попыток: 89
Задача опубликована: 06.03.17 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

По кругу написаны 29 ненулевых цифр. Из каждой пары соседних цифр составили двузначное число (при обходе по часовой стрелке первая цифра - число десятков, вторая - число единиц). При этом произведение получившихся 29 чисел является полным квадратом натурального числа. Найти минимальную сумму всех цифр. 

Задачу решили: 56
всего попыток: 93
Задача опубликована: 29.03.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

В равнобедренном треугольнике ABC угол при вершине CAB расен 20°. Из вершин B и C провели прямые линии так, что угол MBC равен 60°, а угол NCB равен 70°.

Найдите угол MNC в градусах.

Задачу решили: 66
всего попыток: 80
Задача опубликована: 10.04.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

На сторонах треугольника достроены квадраты. Найти площадь шестиугольника с розовыми сторонами.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.