img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: tubaki решил задачу "Пять дробей" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 23
всего попыток: 30
Задача опубликована: 16.12.22 00:08
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Найдите количество целых решений уравнения:
x2022+(2022!+1!)x2021+(2021!+2!)x2020+ ... + (1!+2022!)=0, где n!=1*2*...*n.

Задачу решили: 25
всего попыток: 42
Задача опубликована: 19.12.22 00:08
Прислал: admin img
Вес: 2
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: solomon

Известно, что 
3\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{a}+\sqrt[3]{b}-\sqrt[3]{c}, где a, b, c - натуральные числа. Найти a+b+c.

Задачу решили: 22
всего попыток: 34
Задача опубликована: 23.12.22 00:08
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: aaa_uz

Целочисленная функция f(x) (f: Ν+ → N+) такая, что 0 < f(a) < f(b) для всех a < b и f(f(x)) = 3x. Найдите f(2023)+f(2022)+f(2021)-3f(2020).

Задачу решили: 19
всего попыток: 25
Задача опубликована: 03.02.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Рассмотрим бесконечную клетчатую плоскость, в каждую клетку которой вписано число натурального ряда, – по порядку, начиная с 1, следуя по спирали (см. рис.). Спираль для определенности будем считать закручивающейся по часовой стрелке.

Круги на спирали

Введем прямоугольную систему координат с началом в центре клетки с числом 1 и осями, параллельными сторонам клеток. Нарисуем в ней четыре параболы y=x3, y=–x3, x=y3 и x=–y3. Рассмотрим на параболах точки с целыми координатами. Каждая такая точка определяет клетку плоскости, а значит, и написанное в ней число. Например, точке параболы (0; 0) соответствует число 1, точке (1; 1) — число 9, а точке (2; 8) — число 283. Все такие числа выделены зеленым цветом. Сгруппируем выделенные числа так, чтобы все они (кроме центральной единицы) лежали на концентрических окружностях. На рисунке приведены первые две окружности.  Найдите среднее арифметическое чисел, расположенных на 10-ой окружности и укажите его в ответе.

Задачу решили: 24
всего попыток: 25
Задача опубликована: 27.10.23 08:00
Прислал: admin img
Источник: Польская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Определить сумму всех натуральных чисел x, для которых число 1 + x + x2 + x3 + x4 + x5 + x6 + x7 является степенью простого числа.

Задачу решили: 11
всего попыток: 12
Задача опубликована: 08.11.23 08:00
Прислал: admin img
Источник: Польская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: MikeNik (Mikhail Nikitkov)

Действительные отличные от нуля числа x, y таковы, что
x * (4x - 2y)/(4x + 2y) = y * (4y - 2x)/(4y + 2x). Найти |x|/|y|.

Задачу решили: 22
всего попыток: 37
Задача опубликована: 12.01.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: putout (Дмитрий Лебедев)

a/b + b/c + c/a=3,
b/a + c/b + a/c=2.
(a/b)3 + (b/c)3 + (c/a)3=?

Задачу решили: 23
всего попыток: 29
Задача опубликована: 05.02.24 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

В области, ограниченной параболой y = 8 − x2 и осью Ox, находится 25 целочисленных точек (см. рис.).

Парабола и целочисленные точки

При каком натуральном значении k количество точек с целочисленными координатами, находящимся внутри области, ограниченной параболой y = k − x2 и осью Ox равно 2024.

Задачу решили: 14
всего попыток: 17
Задача опубликована: 22.03.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

На рисунке изображена красная «змейка», представляющая собой бесконечную ломаную, соседние звенья которой перпендикулярны, длины её звеньев – натуральные числа 1, 2, 3, …

Ломаная в параболе

Докажите, что все вершины ломаной лежат на параболе. Ломаная делит внутреннюю область параболы на криволинейные треугольники, площади которых соответственно равны S1, S2, S3, …

Найдите площадь S100 сотого криволинейного треугольника и укажите ее в ответе.

Задачу решили: 15
всего попыток: 17
Задача опубликована: 15.04.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kf_GoldFish

Прямоугольник N × 1 целиком помещается в прямоугольнике K × L. Найдите минимальное вещественное L, если K=97 и N=163.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.