Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
11
всего попыток:
12
Действительные отличные от нуля числа x, y таковы, что
Задачу решили:
22
всего попыток:
23
Для какого наибольшего натурального числа N в десятичной записи каждого из чисел N, 2N, 3N, …, N² последняя цифра не равна предпоследней?
Задачу решили:
22
всего попыток:
38
Пусть R - луч, с вершиной в точке P(0; 10) и проходящий через точку (13; 13). M - это множество точек с натуральными координатами, не превосходящими 106. Луч R начинает вращаться вокруг своей вершины P против часовой стрелки. Какая точка из M первой встретится ему на пути? В качестве ответа введите сумму координат этой точки.
Задачу решили:
22
всего попыток:
37
a/b + b/c + c/a=3,
Задачу решили:
23
всего попыток:
29
В области, ограниченной параболой y = 8 − x2 и осью Ox, находится 25 целочисленных точек (см. рис.). При каком натуральном значении k количество точек с целочисленными координатами, находящимся внутри области, ограниченной параболой y = k − x2 и осью Ox равно 2024.
Задачу решили:
14
всего попыток:
17
На рисунке изображена красная «змейка», представляющая собой бесконечную ломаную, соседние звенья которой перпендикулярны, длины её звеньев – натуральные числа 1, 2, 3, … Докажите, что все вершины ломаной лежат на параболе. Ломаная делит внутреннюю область параболы на криволинейные треугольники, площади которых соответственно равны S1, S2, S3, … Найдите площадь S100 сотого криволинейного треугольника и укажите ее в ответе.
Задачу решили:
15
всего попыток:
17
Прямоугольник N × 1 целиком помещается в прямоугольнике K × L. Найдите минимальное вещественное L, если K=97 и N=163.
Задачу решили:
13
всего попыток:
15
Прямоугольник N × 1 целиком помещается в прямоугольнике K × L. Дано: K=99, N=189, и L имеет минимально возможное вещественное значение. Найдите синус меньшего угла между сторонами прямоугольников.
Задачу решили:
20
всего попыток:
25
Натуральный ряд «удвоили», то есть каждое число записали дважды. Затем полученный ряд разбили на множества: M1, M2, M3, …, так, что множество Mn содержит n чисел. Ниже вертикальными черточками показано разбиение начала «удвоенного» натурального ряда на множества: 1,|1, 2,|2, 3, 3,|4, 4, 5, 5,|6, 6, 7, 7, 8,|8, 9, 9, 10, 10, 11,|11, 12, 12, 13, 13, Найдите сумму чисел в множестве M2024, укажите ее в ответе.
Задачу решили:
21
всего попыток:
23
В стозначном числе 12345678901234567890…1234567890 вычеркнули все цифры на четных местах. В полученном пятидесятизначном числе снова вычеркнули все цифры на четных местах. Такое вычеркивание продолжалось до тех пор, пока не осталась одна цифра а. А если в том же стозначном числе вычеркнули все цифры на нечетных местах, и в полученном пятидесятизначном числе снова вычеркнули все цифры также на нечетных местах, и такое вычеркивание продолжалось до тех пор, пока не осталась одна цифра b. В ответ введите двузначное число 10а + b.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|