Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
50
всего попыток:
164
Деревянный куб с ребром 10 см требуется полностью оклеить цветной бумагой, вырезав при этом только одну заготовку из бумажного квадрата со стороной n см. Найти наименьшее n, при котором это возможно. (Бумагу можно клеить в несколько слоёв, сгибать где угодно, но сгибы должны быть прямыми.)
Задачу решили:
92
всего попыток:
420
Длины двух высот треугольника равны 12 и 19. Сколько различных целых значений может принимать длина третьей высоты?
Задачу решили:
74
всего попыток:
396
Длины трёх сторон четырёхугольника равны 25, 33 и 39. Найдите длину четвёртой стороны, при которой площадь четырёхугольника максимальна.
Задачу решили:
51
всего попыток:
346
В квадратной таблице 10×10 написаны все целые числа от 1 до 100 — по одному числу в каждой ячейке — так, что числа, отличающиеся друг от друга на ±1, стоят в соседних (по горизонтали или по вертикали) ячейках. Найдите наименьшую сумму 10 чисел, стоящих на диагонали таблицы.
Задачу решили:
215
всего попыток:
242
Сумма двух чисел равна 480. Если у первого числа зачеркнуть последнюю цифру, то получится второе число, делённое на 7. Найдите эти числа. (В ответе укажите первое число.)
Задачу решили:
135
всего попыток:
315
Найдите последние три цифры числа .
Задачу решили:
101
всего попыток:
124
Найдите чётное 16-значное число, квадрат которого оканчивается на само это число. (Пример такого нечётного трёхзначного числа: 6252=390625.)
(Присланная задача была усложнена администрацией...)
Задачу решили:
226
всего попыток:
250
Водитель автомашины грубо нарушил правила дорожного движения, чему свидетелями стали три студента-математика. Номер они не запомнили, но сообщили следующее: 1) номер был четырехзначный; 2) две первые цифры были одинаковы; 3) две последние цифры также были одинаковы; 4) это четырёхзначное число являлось точным квадратом. Помогите сотрудникам автоинспекции понять математиков и определите номер машины.
Задачу решили:
70
всего попыток:
278
Команда из 25 школьников участвует следующем конкурсе. Каждому из них надевают кепку одного из трёх заранее известных цветов так, что каждый видит кепки своих друзей, но не видит своей. После этого каждый школьник пишет на карточке свою фамилию и предполагаемый цвет своей кепки (подглядывать, что пишут другие, нельзя). Команда получает столько очков, сколько было сдано карточек с правильными ответами. Какое наибольшее число очков может гарантированно обеспечить себе команда, если школьники заранее договорятся о своих действиях?
Задачу решили:
103
всего попыток:
222
В треугольнике проведены две медианы с длинами 20 и 30, угол между которыми равен 2·arctg(1/2). Найти площадь треугольника.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|