img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 43
всего попыток: 153
Задача опубликована: 10.12.10 12:00
Прислал: COKPAT img
Источник: Международная олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Сколько существует натуральных чисел m от единицы до миллиона включительно, для каждого из которых найдётся натуральное число N, имеющее ровно в m раз меньше различных натуральных делителей, чем его квадрат N2?

Задачу решили: 61
всего попыток: 113
Задача опубликована: 11.12.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Все целые числа от 1 до 999 выписали в строку (совсем необязательно в порядке возрастания). В каждой пятёрке чисел, написанных подряд, подчеркнули среднее по величине (т.е. третье по возрастанию). Какое наименьшее количество чисел могло быть подчеркнуто?

Задачу решили: 102
всего попыток: 128
Задача опубликована: 13.12.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: casper

Пусть аn=n2+n+1 и bn=an·an+1 (n=1,2,3...). Сколько членов последовательности {bn} НЕ  являются членами последовательности {an}?

Задачу решили: 76
всего попыток: 104
Задача опубликована: 13.12.10 12:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Найдите сумму: [(n+1)/2]+[(n+2)/4]+[(n+4)/8]+[(n+8)/16]+..., где [x] — наибольшее целое число, не превосходящее x. В ответе введите число цифр в её десятичной записи при n=102010.

Задачу решили: 40
всего попыток: 194
Задача опубликована: 16.12.10 08:00
Прислала: KATEHbKA img
Источник: Ирландская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Множество X состоит из различных (но не всех) натуральных чисел от 1 до 2010 включительно и не содержит ни одной степени двойки с целым показателем. Кроме того, сумма любых двух чисел из X не равна степени двойки ни с каким целым показателем. Найдите наибольшее количество чисел в X.

Задачу решили: 126
всего попыток: 159
Задача опубликована: 20.12.10 12:00
Прислала: Marishka24 img
Источник: Всеукраинская олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

Пусть n — натуральное число, а S(n) — сумма цифр числа n. Сколько решений имеет уравнение n+S2(n)=2011?

Задачу решили: 129
всего попыток: 175
Задача опубликована: 21.12.10 08:00
Прислал: Busy_Beaver img
Источник: Мексиканская олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Найдите остаток от деления числа 11+1111+111111+...+11111111111111111111 на 100. (В последнем числе 10 единиц в основании степени и 10 — в показателе.)

Задачу решили: 98
всего попыток: 212
Задача опубликована: 24.12.10 12:00
Прислала: KATEHbKA img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Найдите наибольшее n, для которого число 3·33·333·...·33...3 (в десятичной записи последнего множителя ровно 2010 троек) делится на 3n.

Задачу решили: 102
всего попыток: 288
Задача опубликована: 27.12.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Сколько существует натуральных чисел, делящихся нацело на 210 и имеющих ровно 210 различных натуральных делителей?

Задачу решили: 76
всего попыток: 102
Задача опубликована: 30.12.10 16:19
Прислал: COKPAT img
Источник: Журнал"Квант"
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: scythian (Роман Семёнов)

С каждым из чисел от 000 000 до 999 999 поступим следующим образом: умножим первую цифру на 1, вторую на 2 и так далее, последнюю — на 6. Сумму полученных шести чисел назовём характеристикой исходного числа. Характеристики скольких чисел делятся на 7?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.