img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: fortpost решил задачу "Синусы и косинусы" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 3
+ЗАДАЧА 1853. 11 монет (О. Подлипский, И. Богданов)
  
Задачу решили: 36
всего попыток: 59
Задача опубликована: 21.06.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Имеется 11 монет с различными целыми весами. Сумарный вес любых семи монет больше суммарного веса оставшихся четырех. Найдите наименьший возможный суммарный вес всех монет.

Задачу решили: 23
всего попыток: 58
Задача опубликована: 08.07.19 13:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: anrzej

На каждой стороне треугольника отмечено по две точки, делящие её на три равных отрезка.

Прямоугольник в квадрате

Какую часть площади треугольника занимают эти три звезды, изображенные на рисунке?

Задачу решили: 37
всего попыток: 43
Задача опубликована: 15.07.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: anrzej

Найдите четырехзначное число, удовлетворяющее условию:
\sqrt{\frac{\overline{abcd}}{a+b+c+d}}=\overline{ab,cd} , где каждая буква в выражении \overline{klmn,pq}- это цифра, а вместе они образуют десятичное число.

Задачу решили: 30
всего попыток: 33
Задача опубликована: 26.07.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: solomon

Вычислите значение выражения \frac{lg 1\frac{1}{10}}{lg 10 \cdot lg 11}+\frac{lg 1\frac{1}{11}}{lg 11 \cdot lg 12}+...+ \frac{lg 1\frac{1}{99}}{lg 99 \cdot lg 100.

 

Задачу решили: 34
всего попыток: 48
Задача опубликована: 05.08.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В треугольнике ABC sin A : sin B : sin C = 5 : 7 : 9. Найдите cos (A + B).

Задачу решили: 36
всего попыток: 45
Задача опубликована: 07.08.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Найдите сумму всех шестизначных чисел, являющихся полными квадратами, и у которых числа, представленные первыми тремя цифрами и последними тремя цифрами, отличаютсю по величине не более чем на единицу.

Задачу решили: 29
всего попыток: 65
Задача опубликована: 09.08.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: putout (Дмитрий Лебедев)

Четыре равносторонних треугольника расположены внутри большого квадрата так, что образовался еще один, малый, квадрат.

Треугольники в квадрате

Найдите сумму площадей этих четырех равносторонних треугольников, если сумма площадей большого и малого квадратов равна 64√3.

Задачу решили: 32
всего попыток: 35
Задача опубликована: 12.08.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Равносторонний треугольник поделен прямой линией на 2 части с одинаковыми периметрами.

Делим треугольник линией

Найдите максимум отношений площадей полученных фигур.

Задачу решили: 27
всего попыток: 52
Задача опубликована: 21.08.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

В четырехугольнике ABCD |AB|=6, угол ABC прямой, величина угла BCD равна 45°, а величина угла CAD вдвое больше величины угла ACB. Точка E на стороне BC выбрана так, что DE перпеникулярна AC. Найдите длину отрезка EC.

Задачу решили: 22
всего попыток: 28
Задача опубликована: 04.09.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На вписанной в равносторонний треугольник со стороной 1 окружности выбрана точка так, что расстояния от неё до вершин a, b и c составляют геометрическую прогрессию. Найдите b2.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.