Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
29
всего попыток:
31
Пусть p и q − положительные целые числа такие, что оба уравнения x2-px + q= 0 и x2-qx + p = 0 имеют различные целые корни. Найдите значение p+q.
Задачу решили:
32
всего попыток:
35
Пусть a, b и c - положительные целые числа такие, что Найдите 7a+8b+9c=?
Задачу решили:
28
всего попыток:
29
Пусть p - простое число, а n - целое положительное число и
Задачу решили:
28
всего попыток:
28
Пусть a, b и c - положительные целые числа, a≤b≤c≤200 и Найдите сумму всех возможных решений a+b+c.
Задачу решили:
31
всего попыток:
39
Найдите количество целых неотрицательных упорядоченных троек чисел x, y и z таких, что:
Задачу решили:
28
всего попыток:
31
Из всех 10 цифр (0, 1, 2, ..., 9) составили два пятизначных числа, при этом использовали все цифры и одно число оказалось меньше второго ровно в два раза. Найдите наименьшее число.
Задачу решили:
29
всего попыток:
38
Косинус вершинного угла равнобедренного треугольника равен 527/625. Найти отношение расстояния этой вершины до центра вписанной окружности к длине основания.
Задачу решили:
24
всего попыток:
26
В треугольнике из двух вершин проведены высоты, из третьей вершины биссектриса. Длины их относятся 3:6:4 (высота:высота:биссектриса). Найти угол в градусах при вершине, из которой проведена биссектриса.
Задачу решили:
21
всего попыток:
36
Найти количество различных троек действительных чисел (a, b, c) таких, что:
Задачу решили:
31
всего попыток:
50
Найдите количество действительных решений:
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|