Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
51
всего попыток:
82
Сколькими различными способами можно расставить в таблице 3x3 числа 1, 2, …, 9 таким образом, чтобы все суммы чисел по строкам и столбцам были нечётными?
Задачу решили:
32
всего попыток:
152
Найдите количество всевозможных пар подмножеств множества A = {1,2, ..., 6}, для которых выполняется следующее условие: объединение этой пары дает множество A, а пересечение содержит не менее двух элементов. Подмножества в паре различны, порядок не учитывается.
Задачу решили:
34
всего попыток:
62
Сколькими способами можно провести в выпуклом 7-угольнике A1A2...A7 четыре непересекающихся диагонали так, чтобы 7-угольник разбивался ими на 5 треугольников, каждый из которых имеет с 7-угольником хотя бы одну общую сторону?
Задачу решили:
60
всего попыток:
114
Сколько существует пятизначных чисел-палиндромов, делящихся на 11?
Задачу решили:
27
всего попыток:
218
Найдите количество упорядоченных наборов целых чисел (a1, a2, ..., a8), удовлетворяющих следующим условиям:
Задачу решили:
54
всего попыток:
104
Среди пятизначных чисел с цифрами от 1 до 4 найдите количество тех, у которых никакие две соседние цифры не отличаются ровно на единицу.
Задачу решили:
68
всего попыток:
107
Алекс и Борис бегут супермарафон длиной 70 км. Скорость Алекса 7 км/ч, а Бориса - 10 км/ч. Однако Борис в любой момент может изменить скорость на 5 км/ч и бежать медленнее до самого конца. С какой вероятностью Алекс победит?
Задачу решили:
40
всего попыток:
155
В стране 1993 города, и из каждого выходит не менее 93 дорог. Известно, что из любого города можно проехать по дорогам в любой другой. Дорога соединяет между собой два города. За какое минимальное количество пересадок можно гарантированно добраться из одного города в любой другой?
Задачу решили:
57
всего попыток:
64
На столе лежали две колоды, по 36 карт в каждой. Первую колоду перетасовали и положили на вторую. Затем для каждой карты первой колоды посчитали количество карт между ней и такой же картой второй колоды (т. е. сколько карт между семерками червей, между дамами пик, и т. д.). Чему равна сумма 36 полученных чисел?
Задачу решили:
31
всего попыток:
42
На встречу выпускников пришло 45 человек. Оказалось, что любые двое из них, имеющие одинаковое число знакомых среди пришедших, не знакомы друг с другом. Какое наибольшее число пар знакомых могло быть среди участвовавших во встрече?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|