Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
28
всего попыток:
39
Чтобы гарантированно извлечь квадратный корень из произведения 1!*2!*3!*...*100! нужно вычеркнуть один из факториалов. Укажите какое число стоит перед знаком этого факториала.
Задачу решили:
19
всего попыток:
21
Пусть выпуклый 4-угольник Q (не трапеция) имеет 2 прямых угла и одну лишь пару равных сторон. Постройте отрезок (циркулем и линейкой) с концами на периметре данного Q в качестве стороны квадрата с той же площадью, что и у Q. Заодно, предполагая стороны Q целочисленными, найдите минимальную целочисленную длину искомого отрезка.
Задачу решили:
26
всего попыток:
28
На доске было написано 5 целых чисел по возрастанию, отделяя запятыми. Сложив их попарно, получили следующие 10 чисел: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15. Запишите в ответе написанные на доске 5 целых чисел одним числом, убрав запятые.
Задачу решили:
17
всего попыток:
20
Квадраты ABCD, A1B1C1D1, A2B2C2D2 расположены по убыванию площадей следующим образом: первые 2 квадрата с совмещением сторон CD и А1В1(вершины D и А1 совмещены, вершина В1 лежит на стороне CD), вершина D2 третьего квадрата совмещена с D и А1, а сам квадрат внутри первых двух квадратов так наклонен, что вершина В1 лежит на стороне В2С2 и прямая А2В2 проходит через вершину С. Площадь первого квадрата больше площади второго квадрата в 2 раза. Известно, что все три площади имеют целочисленное значение. Найти наименьшую сумму площадей всех трех кваратов.
Задачу решили:
22
всего попыток:
32
Найти наименьшее количество множителей факториала 2023!, на которых нужно разделить его, чтобы частное оканчивалось на 1 (единицу).
Задачу решили:
20
всего попыток:
28
Квадраты ABCD, A1B1C1D1 и треугольник расположены по убыванию площадей следующим образом: квадрата с совмещением сторон CD и А1В1(вершины D и А1 совмещены, вершина В1 лежит на стороне CD), внутри квадратов расположен треугольник, вершины которого расположены в центрах квадратов и в середине отрезка AD1. Найти сумму наименьших целочисленных площадей всех трех фигур, при известном соотношении площадей двух квадратов 2:1.
Задачу решили:
26
всего попыток:
31
Натуральное число назовем представимым, если его можно представить в виде такой суммы a+b+ab, где a и b натуральные числа. Например, число 101 представимое, потому что 101 = 5 + 16 + 5 · 16. Сколько представимых чисел среди трехзначных?
Задачу решили:
19
всего попыток:
28
Треугольник с целочисленными сторонами имеет две стороны, имеющие значения длин последовательные натуральные числа, с углом между собой в два раза большего одного из двух других углов. Найти сумму наименьших периметров двух таких треугольников.
Задачу решили:
27
всего попыток:
31
(1!*2!*3!*4!*5!*6!*7!*8!*9!*10!/n)1/2=m. Найдите миниммальное целое число n, такое что m - целое.
Задачу решили:
24
всего попыток:
29
2 преподавателя принимают зачет, проверяя практические задания и знание теории у каждого из студентов. У 1-го на это уходит соответственно 5 и 7 минут, а у 2-го 3 и 4 минуты. За какое минимальное время в минутах они сумеют опросить 25 студентов?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|