Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
100
всего попыток:
463
В подвале имеется некоторое количество лампочек, выключатели для которых находятся снаружи так, что узнать какой выключатель соответствует какой лампочке можно только спустившись в подвал. Для того, чтобы установить соответствие для всех лампочек хозяину потребовалось спуститься 2 раза. Какое максимальное количество лампочек могло быть в подвале?
Задачу решили:
38
всего попыток:
51
Вася кодирует стихи, заменяя все буквы русского алфавита различными числами от 1 до 33, и посылает Маше ссылку на текст и наборы чисел, являющиеся суммами кодов букв в словах. Так, взяв Пушкина, он закодировал Мой дядя самых честных правил 11 8 131 134 165 Когда не в шутку занемог 46 18 27 52 84 Закодируйте васиным кодом слова КРИМПЛЕН, ШТУЧКА, ЗАВОД, ЙОГ. В ответе введите произведение полученных чисел.
Задачу решили:
33
всего попыток:
189
Лева клонирует любимую овечку. Имя клона формируется на основе даты (день месяца, день недели, год) клонирования: первые 2 символа - заглавные буквы латинского алфавита, третий - номер дня недели, далее, "_" и год. Все буквы в алфавитном порядке занумерованы, начиная с 1. Из пары букв имени одна должна быть гласной (A, E, I, O, U, W, Y), другая - согласной и сумма их номеров должна равняться числу (дню) в месяце. Так для клона, произведенного 20 сентября 2013г., в пятницу, имя может иметь вид SA5_2013. За один день нельзя сделать больше одного клона. Если имена должны быть уникальными, какое максимальное количество клонов может произвести на свет Лева за 2012-2013 годы?
Задачу решили:
46
всего попыток:
97
Найти максимальную длину такой последовательности натуральных чисел N(i), что N(i) <= 2013 для любого i, N(i) = | N(i-1) - N(i-2) | для i>2
Задачу решили:
76
всего попыток:
92
На окружности с центром в точке O и радиусом 1 отмечены точки A и B. Хорда AB является диаметром второй окружности, при этом на этой окружности имеется точка C такая, что расстояние OC является максимальным. Найдите квадрат длины хорды AB.
Задачу решили:
92
всего попыток:
160
У торговцев Пети и Васи было по 30 пирожков. Они начали продавать их по 30 рублей. Если у одного из них покупают пирожок, другой немедленно снижает цену на свои пирожки на один рубль (пирожки продаются только по одному, и такого, чтобы они продавали по пирожку одновременно, не бывает). Сколько денег выручат в сумме Петя и Вася, когда продадут все свои пирожки?
Задачу решили:
43
всего попыток:
180
На столе лежит 100 монет орлами вверх. За одно действие вы можете перевернуть ровно 93 монетки. Какое наименьшее количество действий нужно совершить, чтобы все монетки лежали вверх решками.
Задачу решили:
55
всего попыток:
108
f(1111)=4, f(1234)=3, f(4567)=2, f(1357)=4, f(6518)=4, f(3817)=6, f(8008)=6, f(2014)=?
Задачу решили:
81
всего попыток:
146
Какое количество точек, у которых хотя бы одна из координат является целым числом, лежит на окружности x2+y2=49?
Задачу решили:
25
всего попыток:
329
Три из четырех сторон четырехугольника имеют длины 3, 4 и 5 и два угла у него прямые. Пусть S - сумма различных площадей всех возможных таких четырехугольников. Чему равна целая часть S?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|