Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
1186
всего попыток:
7696
Сколько оборотов в сутки делает прямая, содержащая биссектрису угла между часовой и минутной стрелками? (Если угол нулевой, то эта прямая проходит по стрелкам, если развёрнутый — то перпендикулярна им.)
Задачу решили:
2794
всего попыток:
5105
Коля и Вася живут в одном доме, на каждой лестничной клетке которого 4 квартиры. Коля живет на пятом этаже, в квартире 83, а Вася — на третьем этаже в квартире 169. Сколько этажей в доме?
Задачу решили:
2914
всего попыток:
3530
Студент за 5 лет учения сдал 31 экзамен. В каждом следующем году он сдавал больше экзаменов, чем в предыдущем, а на пятом курсе сдал втрое больше экзаменов, чем на первом курсе. Сколько экзаменов он сдал на четвертом курсе?
Задачу решили:
2197
всего попыток:
4658
– Привет! – Привет! – Как дела? – Хорошо. Растут два сына. – А сколько им лет? – Сумма их возрастов равна квадрату количества голубей возле этой скамейки. – Этой информации мне недостаточно... – Старший похож на мать. – Вот теперь я знаю ответ на свой вопрос. Сколько лет сыновьям? (В ответе указать произведение их возрастов.)
Задачу решили:
166
всего попыток:
397
Прямоугольный лист бумаги разрезают по прямой на две части. Одну из частей разрезают по прямой на две части. Одну из трёх полученных частей снова разрезают по прямой на две части. Одну из четырёх полученных частей снова разрезают по прямой на две части, и т.д. Какое наименьшее число разрезов нужно сделать, чтобы получить 100 семиугольников?
Задачу решили:
158
всего попыток:
508
Про некоторую рощу известно, что расстояние между любыми двумя деревьями не превосходит утроенной разности их высот, а все деревья имеют высоту не более 100 м. Какова минимальная длина забора, которого заведомо хватит, чтобы обнести эту рощу? (Дайте ответ в метрах.)
Задачу решили:
677
всего попыток:
1803
На каждом километре шоссе, соединяющего города А и Б стоит столбик с табличкой, на одной стороне которой написано, сколько километров до А, на другой — до Б. Известно, что на каждом столбике сумма всех цифр равна 17. Какова длина шоссе?
Задачу решили:
211
всего попыток:
630
Из 220 спичек сложили квадрат 10×10, состоящий из 100 маленьких квадратиков 1×1. Фигуру из четырёх спичек, сходящихся в одной точке, будем называть крестиком. Какое наименьшее число спичек нужно убрать, чтобы не осталось ни одного крестика?
Задачу решили:
527
всего попыток:
1231
Расписание движения требует от водителя междугороднего автобуса, чтобы он проезжал ровно 60 км за любой промежуток времени длительностью ровно 1 час (т.е. в любой момент времени после первого часа своего пути автобус должен быть на расстоянии 60 км от того места, где был час назад). Какое максимальное расстояние сможет проехать автобус за 2 часа 50 минут, если водитель будет строго придерживаться расписания? (Ответ выразите в км, единицы измерения не указывайте.)
Задачу решили:
177
всего попыток:
627
Есть картонный невыпуклый стоугольник. Если разрезать его один раз по прямой линии, то он распадётся на несколько новых многоугольников. Какое максимальное число треугольников может среди них получиться?
(Предлагалась на "Первом математическом")
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|